Accumulation then philanthropy

Peter Woit’s review of a new book about Jim Simons, the mathematician and capitalist who set up the Simons Foundation, which funds math and physics research around the world but principally in the West to the tune of $300 million a year, raises an intriguing question only to supersede its moral quandaries by the political rise of Donald Trump in the US. To quote select portions from the review:

In the case of the main money-maker, their Medallion fund, it’s hard to argue that the short-term investment strategies they use provide important market liquidity. The fund is closed to outside investors, and makes money purely personally for those involved with RenTech, not for institutions like pension funds. So, the social impact of RenTech will come down to that of what Simons and a small number of other mathematicians, physicists and computer scientists decide to do with the trading profits.

Simons himself has engaged in some impressive philanthropy, but one perhaps should weigh that against the effects of the money spent by Robert Mercer, the co-CEO he left the company to. Mercer and his daughter have a lot of responsibility for some of the most destructive recent attacks on US democracy (e.g. Breitbart and the Cambridge Analytica 2016 election story). In the historical evaluation of whether the world would have been better off with or without RenTech, the fact that RenTech money may have been a determining factor in bringing Trump and those around him to power is going to weigh heavily on one side.

This may be the Simons Foundation’s fate but what of other wealthy bodies that accumulate capital by manipulating various financial instruments – the way Jim Simons did – and then donate all or part of them to research? Bill Gates was complicit, as were his compatriots at Silicon Valley, in the rise of techno-optimism and its attendant politics and fallacies, but the foundation he and his wife run today is becoming instrumental in the global fight against malaria. Gates’s Microsoft cofounder Paul Allen has a similar story, as did Jeffrey Epstein, as do many other ‘venture capitalists’ who had to accumulate capital – a super-sin of our times – before redistributing it philanthropically to various causes, benign and otherwise.

If these various organisations hadn’t acquired their wealth in the first place, would their later philanthropy have been necessary? A follow-up: There’s an implicit tendency to assume the research that these foundations fund can only be a good but is it really? Aside from the question of science’s, and scientists’, relationship with the rest of society, I wonder how differently research efforts would be spread around the world if the world had been spared the accumulation-then-philanthropy exercise. If there is a straightforward argument for why there’s likely to be no difference, I’m all ears; but if such an argument doesn’t exist, perhaps there’s an injustice there we should address.

To see faces where there are none

This week in “neither university press offices nor prestigious journals know what they’re doing”: a professor emeritus at Ohio University who claimed he had evidence of life on Mars, and whose institution’s media office crafted a press release without thinking twice to publicise his ‘findings’, and the paper that Nature Medicine published in 2002, cited 900+ times since, that has been found to contain multiple instances of image manipulation.

I’d thought the professor’s case would remain obscure because it’s evidently crackpot but this morning, articles from Space.com and Universe Today showed up on my Twitter setting the record straight: that the insects the OU entomologist had found in pictures of Mars taken by the Curiosity rover were just artefacts of his (insectile) pareidolia. Some people have called this science journalism in action but I’d say it’s somewhat offensive to check if science journalism still works by gauging its ability, and initiative, to countering conspiracy theories, the lowest of low-hanging fruit.

The press release, which has since been taken down. Credit: EurekAlert and Wayback Machine

The juicier item on our plate is the Nature Medicine paper, the problems in which research integrity super-sleuth Elisabeth Bik publicised on November 21, and which has a science journalism connection as well.

Remember the anti-preprints article Nature News published in July 2018? Its author, Tom Sheldon, a senior press manager at the Science Media Centre, London, argued that preprints “promoted confusion” and that journalists who couldn’t bank on peer-reviewed work ended up “misleading millions”. In other words, it would be better if we got rid of preprints and journalists deferred only to the authority of peer-reviewed papers curated and published by journals, like Nature. Yet here we are today, with a peer-reviewed manuscript published in Nature Medicine whose checking process couldn’t pick up on repetitive imagery. Is this just another form of pareidolia, to see a sensational result – knowing prestigious journals’ fondness for such results – where there was actually none?

(And before you say this is just one paper, read this analysis: “… data from several lines of evidence suggest that the methodological quality of scientific experiments does not increase with increasing rank of the journal. On the contrary, an accumulating body of evidence suggests the inverse: methodological quality and, consequently, reliability of published research works in several fields may be decreasing with increasing journal rank.” Or this extended critique of peer-review on Vox.)

This isn’t an argument against the usefulness, or even need for, peer-review, which remains both useful and necessary. It’s an argument against ludicrous claims that peer-review is infallible, advanced in support of the even more ludicrous argument that preprints should be eliminated to enable good journalism.

Cassini's last shot of Titan, taken by the probe's narrow-angle camera on September 13, 2017. Credit: NASA

A new map of Titan

It’s been a long time since I’ve obsessed over Titan, primarily because after the Cassini mission ended, the pace of updates about Titan died down, and because other moons of the Solar System (Europa, Io, Enceladus, Ganymede and our own) became more important. There have been three or four notable updates since my last post about Titan but this post that you’re reading has been warranted by the fact that scientists recently released the first global map of the Saturnian moon.

(This Nature article offers a better view but it’s copyrighted. The image above is a preview offered by Nature Astronomythe paper itself is behind a paywall and I couldn’t find a corresponding copy on Sci-Hub or arXiv nor have I written to the corresponding author – yet.)

It’s fitting that Titan be accorded this privilege – of a map of all locations on the planetary body – because it is by far the most interesting of the Solar System’s natural satellites (although Europa and Triton come very close) and were it not orbiting the ringed giant, it could well be a planet of its own accord. I can think of a lot of people who’d agree with this assessment but most of them tend to focus on Titan’s potential for harbouring life, especially since NASA’s going to launch the Dragonfly mission to the moon in 2026. I think they’ve got it backwards: there are a lot of factors that need to come together just right for any astronomical body to host life, and fixating on habitability combines these factors and flattens them to a single consideration. But Titan is amazing because it’s got all these things going on, together with many other features that habitability may not be directly concerned with.

While this is the first such map of Titan, and has received substantial coverage in the popular press, it isn’t the first global assessment of its kind. Most recently, in December 2017, scientists (including many authors of the new paper) published two papers of the moon’s topographical outlay (this and this), based on which they were able to note – among other things – that Titan’s three seas have a common sea level; many lakes have surfaces hundreds of meters above this level (suggesting they’re elevated and land-locked); many lakes are connected under the surface and drain into each other; polar lakes (the majority) are bordered by “sharp-edged depressions”; and Titan’s crust has uneven thickness as evidenced by its oblateness.

According to the paper’s abstract, the new map brings two new kinds of information to the table. First, the December 2017 papers were based on hi- and low-res images of about 40% of Titan’s surface whereas, for the new map, the authors write: “Correlations between datasets enabled us to produce a global map even where datasets were incomplete.” More specifically, areas for which authors didn’t have data from Cassini’s Synthetic Aperture Radar instrument for were mapped at 1:2,000,000 scale whereas areas with data enabled a map at 1:8,000,000 scale. Second is the following inferences of the moon’s geomorphology (from the abstract the authors presented to a meeting of the American Astronomical Society in October 2018):

We have used all available datasets to extend the mapping initially done by Lopes et al. We now have a global map of Titan at 1:800,000 scale in all areas covered by Synthetic Aperture Radar (SAR). We have defined six broad classes of terrains following Malaska et al., largely based on prior mapping. These broad classes are: craters, hummocky/mountainous, labyrinth, plains, lakes, and dunes [see image below]. We have found that the hummocky/mountainous terrains are the oldest units on the surface and appear radiometrically cold, indicating icy materials. Dunes are the youngest units and appear radiometrically warm, indicating organic sediments.

SAR images of the six morphological classes (in the order specified in the abstract)

More notes once I’ve gone through the paper more thoroughly. And if you’d like to read more about Titan, here’s a good place to begin.

A Starlink satellite prepares for deployment from the second stage of a Falcon 9 rocket launched on November 11. Credit: SpaceX

Playing the devil’s advocate on Starlink

After SpaceX began to launch its Starlink satellite constellation to facilitate global internet coverage, astronomers began complaining that the satellites are likely to interfere with stargazing schemes, especially those of large, sensitive telescopes. Spaceflight stakeholders also began to worry, especially after SpaceX’s announcement that the Starlink constellation is in fact the precursor to a mega-constellation of at least 12,000 satellites, that it could substantially increase space traffic and complicate satellite navigation.

Neither of these concerns is unfounded, primarily because neither SpaceX nor the branch of the American government responsible for regulating payloads – so by extension the American government itself – should get to decide how to use a resource that belongs to the whole world by itself, without proper multi-stakeholder consultation. With Starlink as its instrument, and assuming the continued absence of proper laws to control how mega-constellations are to be designed and operated, SpaceX will effectively colonise a big chunk of the orbital shells around Earth. The community of astronomers has been especially vocal and agitated over Starlink’s consequences for its work, and a part of it has directed its protests against what it sees as SpaceX’s misuse of space as a global commons, and as a body of shared cultural heritage.

The idea of space as a public commons is neither new nor unique but the ideal has seldom been met. The lopsided development of spaceflight programmes around the world, but particularly in China and the US, attests to this. In the absence of an international space governance policy that is both rigid enough to apply completely to specific situations and flexible enough to adapt to rapid advancements in private spaceflight, people and businesses around the world are at the mercy of countries that possess launch vehicles, the regulatory bodies that oversee their operations and the relationship between the two (or more) governments. So space is currently physically available and profitable only to a select group of countries.

The peaceful and equitable enjoyment of space, going by the definition that astronomers find profitable, is another matter. Both the act and outcomes of stargazing are great sources of wonder for many, if not all, people while space itself is not diminished in any way by astronomers’ activities. NASA’s ‘Astronomy Picture of the Day’ platform has featured hundreds of spectacular shots of distant cosmological features captured by the Hubble Space Telescope, and news of the soon-to-be-launched James Webb Space Telescope is only met with awe and a nervous excitement over what new gems its hexagonal eyes will discover.

Astronomy often is and has been portrayed as an innocent and exploratory exercise that uncovers the universe’s natural riches, but closer to the ground, where the efforts of its practitioners are located, it is not so innocent. Indeed, it represents one of the major arms of modern Big Science, and one of Big Science’s principal demands is access to large plots of land, often characterised by its proponents as unused land or land deemed unprofitable for other purposes.

Consider Mauna Kea, the dormant volcano in Hawaii with a peak height of 4.2 km above sea level. Its top is encrusted with 13 telescopes, but where astronomers continued to see opportunity to build more (until the TMT became as controversial as it did), Native Hawaiians saw encroachment and destruction to an area they consider sacred. Closer home, one of the principle prongs of resistance to the India-based Neutrino Observatory, a large stationary detector that a national collaboration wants to install inside a small mountain, has been that its construction will damage the surrounding land – land that the collaboration perceives to be unused but which its opponents in Tamil Nadu (where the proposed construction site is located) see, given the singular political circumstances, as an increasingly precious and inviolable resource. This sentiment in turn draws on past and ongoing resistance to the Kudankulam nuclear power plant, the proposed ISRO launchpad at Kulasekarapattinam and the Sterlite copper-smelting plant in Tamil Nadu, and the Challakere ‘science city’ in Karnataka, all along the same lines.

Another way astronomy is problematic is in terms of its enterprise. That is, who operates the telescopes that will be most affected by the Starlink mega-constellation, and with whom do the resulting benefits accrue? Arguments of the ‘fix public transport first before improving spaceflight’ flavour are certainly baseless (for principles as well as practicalities detailed here) but it would be similarly faulty for a working definition of a global commons to originate from a community of astronomers located principally in the West, for whom clear skies are more profitable than access to low-cost internet.

More specifically, to quote Prakash Kashwan, a senior research fellow at the Earth System Governance Project:

The ‘good’ in public good refers to an ‘economic good’ or a thing – as in goods and services – that has two main characteristics: non-excludability and non-rivalry. Non-excludability refers to the fact that once a public good is provided, it is difficult to exclude individuals from enjoying its benefits even if they haven’t contributed to its provisioning. Non-rivalry refers to the fact that the consumption of a public good does not negatively impact other individuals’ ability to also benefit from a public good.

In this definition, astronomy (involving the use of ground-based telescopes) has often been exclusive, whether as a human industry in its need for land and designation of public goods as ‘useless’ or ‘unused’, or as a scientific endeavour, whereby its results accrue unevenly in society especially without public outreach, science communication, transparency, etc. Starlink, on the other hand, is obviously rivalrous.

There’s no question that by gunning for a mega-constellation of satellites enveloping Earth, Musk is being a bully (irrespective of his intentions) – but it’s also true that the prospect of low-cost internet promises to render space profitable to more people than is currently the case. So if arguments against his endeavour are directed along the trajectory that Starlink satellites damage, diminish access to and reduce the usefulness of some orbital regions around Earth, instead of against the US government’s unilateral decision to allow the satellites to be launched in the first place, it should be equally legitimate to claim that these satellites also enhance the same orbital regions by extracting more value from them.

Ultimately, the ‘problem’ is also at risk of being ‘resolved’ because Musk and astronomers have shaken hands on it. The issue isn’t whether astronomers should be disprivileged to help non-astronomers or vice versa, but to consider if astronomers’ comments on the virtues of astronomy gloss over their actions on the ground and – more broadly – to remember the cons of prioritising the character of space as a source of scientific knowledge over other, more germane opportunities, and to remind everyone that the proper course of action would be to do what neither Musk and the American government nor the astronomers have done at the moment. That is, undertake public consultation, such as with stakeholders in all countries party to the Outer Space Treaty, instead of assuming that de-orbiting or anything else for that matter is automatically the most favourable course of action.

The cycle

Is it just me or does everyone see a self-fulfilling prophecy here?

For a long time, and assisted ably by the ‘publish or perish’ paradigm, researchers sought to have their papers published in high-impact-factor journals – a.k.a. prestige journals – like Nature.

Such journals in turn, assisted ably by parasitic strategies, made these papers highly visible to other researchers around the world and, by virtue of being high-IF journals, tainted the results in the papers with a measure of prestige, ergo importance.

Evaluations and awards committees in turn were highly aware of these papers over others and picked their authors for rewards over others, further amplifying their work, increasing the opportunity cost incurred by the researchers who lose out, and increasing the prestige attached to the high-IF journals.

Run this cycle a few million times and you end up with the impression that there’s something journals like Nature get right – when in fact it’s just mostly a bunch of business practices to ensure they remain profitable.

New management at Nautilus

When an email landed in my inbox declaring that the beleaguered science communication magazine Nautilus would be “acquired by ownership group of super-fans”, I thought it was going to become a cooperative. It was only when I read the extended statement that I realised the magazine was undergoing a transformation that wasn’t at all new to the global media landscape.

A super-group of investors has come to Nautilus‘s rescue, bearing assurances that publisher John Steele repeats in the statement without any penitence for having stiffed its contributors for months on end, in some cases for over a year, for pieces already published: “Together we will work even harder to expand the public’s knowledge and understanding of fundamental questions of scientific inquiry, as well as their connection to human culture.” Steele also appears to be blind to the irony of his optimism when the “craven shit-eating” of private equity just sunk the amazing Deadspin (to quote from a suitably biting obituary by Alex Shephard).

The statement doesn’t mention whether the new investment covers pending payments and by when. In fact, the whole statement is obsessed with Nautilus‘s commitment to science in a tone that verges on cheerleading – and now and then crosses over too – which is bizarre because Nautilus is a science communication magazine, not a science magazine, so its cause, to use the term loosely, is to place science in the right context and on occasion even interrogate it. But the statement mentions an accompanying public letter entitled ‘Science Matters’. According to Steele,

The letter is a public commitment by the Nautilus team, its staff, advisors, and its contributors; leading thinkers, researchers, teachers, and businesspeople; and the public at large to tirelessly advance the cause of science in America and around the world.

Huh?

By itself such commitments don’t bode well (they’re awfully close to scientism) but they assume a frightening level of plausibility when read together with the list of investors. The latter includes Larry Summers, his wife Elisa New, and Nicholas White. One of the others, Fraser Howie, is listed as an “author” but according to his bio in the Nikkei Asian Review, “He has worked in China’s capital markets since 1992.” His authorship probably refers to his three books but they’re all about the Chinese financial system.

Everyone here is a (white) capitalist, most of them men. Call me cynical but something about this doesn’t sit well. For all the details in the statement of the investors’ institutional affiliations, it’s hard to imagine them sitting around a table and agreeing that Nautilus needs to be critical of, instead of sympathetic to, science – especially since the takeover will also transform the magazine from a non-profit to a for-profit endeavour.

The climate and the A.I.

A few days ago, the New York Times and other major international publications sounded the alarm over a new study that claimed various coastal cities around the world would be underwater to different degrees by 2050. However, something seemed off; it couldn’t have been straightforward for the authors of the study to plot how much the sea-level rise would affect India’s coastal settlements. Specifically, the numbers required to calculate how many people in a city would be underwater aren’t readily available in India, if at all they do exist. Without this bit of information, it’s easy to disproportionately over- or underestimate certain outcomes for India on the basis of simulations and models. And earlier this evening, as if on cue, this thread appeared:

This post isn’t a declaration of smugness (although it is tempting) but to turn your attention to one of Palanichamy’s tweets in the thread:

One of the biggest differences between the developed and the developing worlds is clean, reliable, accessible data. There’s a reason USAfacts.org exists whereas in India, data discovery is as painstaking a part of the journalistic process as is reporting on it and getting the report published. Government records are fairly recent. They’re not always available at the same location on the web (data.gov.in has been remedying this to some extent). They’re often incomplete or not machine-readable. Every so often, the government doesn’t even publish the data – or changes how it’s obtained, rendering the latest dataset incompatible with previous versions.

This is why attempts to model Indian situations and similar situations in significantly different parts of the world (i.e. developed and developing, not India and, say, Mexico) in the same study are likely to deviate from reality: the authors might have extrapolated the data for the Indian situation using methods derived from non-native datasets. According to Palanichamy, the sea-level rise study took AI’s help for this – and herein lies the rub. With this study itself as an example, there are only going to be more – and potentially more sensational – efforts to determine the effects of continued global heating on coastal assets, whether cities or factories, paralleling greater investments to deal with the consequences.

In this scenario, AI, and algorithms in general, will only play a more prominent part in determining how, when and where our attention and money should be spent, and controlling the extent to which people think scientists’ predictions and reality are in agreement. Obviously the deeper problem here lies with the entities responsible for collecting and publishing the data – and aren’t doing so – but given how the climate crisis is forcing the world’s governments to rapidly globalise their action plans, the developing world needs to inculcate the courage and clarity to slow down, and scrutinise the AI and other tools scientists use to offer their recommendations.

It’s not a straightforward road from having the data to knowing what it implies for a city in India, a city in Australia and a city in Canada.

Scientism is not ‘nonsense’

The @realscientists rocur account on Twitter took a surprising turn earlier today when its current curator, Teresa Ambrosio, a chemist, tweeted the following:

If I had to give her the benefit of doubt, I’d say she was pointing this tweet at the hordes of people – especially Americans – whose conspiratorial attitude towards vaccines and immigrants is founded entirely on their personal experiences being at odds with scientific knowledge. However, Ambrosio wasn’t specific, so I asked her:

The responses to my tweet, encouraged in part by Ambrosio herself, were at first dominated by (too many) people who seemed to agree, broadly, that science is an apolitical endeavour that could be cleanly separated from the people who practice it and that science has nothing to do with the faulty application of scientific knowledge. However, the conversation rapidly turned after one of the responders called scientism “nonsense” – a stance that would rankle not just the well-informed historian of science but in fact so many people in non-developed nations where scientific knowledge is often used to legitimise statutory authority.

I recommend reading the whole conversation, especially if what you’re looking for is a good and sufficiently well-referenced summary of a) why scientism is anything but nonsense; b) why science is not apolitical; and c) how scientism is rooted in the need to separate science and the scientist.

An engraved bust of Alfred Nobel. Credit: sol_invictus/Flickr, CC BY 2.0

Why are the Nobel Prizes still relevant?

Note: A condensed version of this post has been published in The Wire.

Around this time last week, the world had nine new Nobel Prize winners in the sciences (physics, chemistry and medicine), all but one of whom were white and none were women. Before the announcements began, Göran Hansson, the Swede-in-chief of these prizes, had said the selection committee has been taking steps to make the group of laureates more racially and gender-wise inclusive, but it would seem they’re incremental measures, as one editorial in the journal Nature pointed out.

Hansson and co. seems to find the argument that the Nobel Prizes award achievements at a time where there weren’t many women in science tenable when in fact it distracts from the selection committee’s bizarre oversight of such worthy names as Lise Meitner, Vera Rubin, Chien-Shiung Wu, etc. But Hansson needs to understand that the only meaningful change is change that happens right away because, even for this significant flaw that should by all means have diminished the prizes to a contest of, for and by men, the Nobel Prizes have only marginally declined in reputation.

Why do they matter when they clearly shouldn’t?

For example, according to the most common comments received in response to articles by The Wire shared on Twitter and Facebook, and always from men, the prizes reward excellence, and excellence should brook no reservation, whether by caste or gender. As is likely obvious to many readers, this view of scholastic achievement resembles a blade of grass: long, sprouting from the ground (the product of strong roots but out of sight, out of mind), rising straight up and culminating in a sharp tip.

However, achievement is more like a jungle: the scientific enterprise – encompassing research institutions, laboratories, the scientific publishing industry, administration and research funding, social security, availability of social capital, PR, discoverability and visibility, etc. – incorporates many vectors of bias, discrimination and even harassment towards its more marginalised constituents. Your success is not your success alone; and if you’re an upper-caste, upper-class, English-speaking man, you should ask yourself, as many such men have been prompted to in various walks of life, who you might have displaced.

This isn’t a witch-hunt as much as an opportunity to acknowledge how privilege works and what we can do to make scientific work more equal, equitable and just in future. But the idea that research is a jungle and research excellence is a product of the complex interactions happening among its thickets hasn’t found meaningful purchase, and many people still labour with a comically straightforward impression that science is immune to social forces. Hansson might be one of them if his interview to Nature is anything to go by, where he says:

… we have to identify the most important discoveries and award the individuals who have made them. If we go away from that, then we’ve devalued the Nobel prize, and I think that would harm everyone in the end.

In other words, the Nobel Prizes are just going to look at the world from the top, and probably from a great distance too, so the jungle has been condensed to a cluster of pin-pricks.

Another reason why the Nobel Prizes haven’t been easy to sideline is that the sciences’ ‘blade of grass’ impression is strongly historically grounded, with help from notions like scientific knowledge spreads from the Occident to the Orient.

Who’s the first person that comes to mind when I say “Nobel Prize for physics”? I bet it’s Albert Einstein. He was so great that his stature as a physicist has over the decades transcended his human identity and stamped the Nobel Prize he won in 1921 with an indelible mark of credibility. Now, to win a Nobel Prize in physics is to stand alongside Einstein himself.

This union between a prize and its laureate isn’t unique to the Nobel Prize or to Einstein. As I’ve said before, prizes are elevated by their winners. When Margaret Atwood wins the Booker Prize, it’s better for the prize than it is for her; when Isaac Asimov won a Hugo Award in 1963, near the start of his career, it was good for him, but it was good for the prize when he won it for the sixth time in 1992 (the year he died). The Nobel Prizes also accrued a substantial amount of prestige this way at a time when it wasn’t much of a problem, apart from the occasional flareup over ignoring deserving female candidates.

That their laureates have almost always been from Europe and North America further cemented the prizes’ impression that they’re the ultimate signifier of ‘having made it’, paralleling the popular undercurrent among postcolonial peoples that science is a product of the West and that they’re simply its receivers.

That said, the prize-as-proxy issue has contributed considerably as well to preserving systemic bias at the national and international levels. Winning a prize (especially a legitimate one) accords the winner’s work with a modicum of credibility and the winner, of prestige. Depending on how the winners of a prize to be awarded suitably in the future are to be selected, such credibility and prestige could be potentiated to skew the prize in favour of people who have already won other prizes.

For example, a scientist-friend ranted to me about how, at a conference he had recently attended, another scientist on stage had introduced himself to his audience by mentioning the impact factors of the journals he’d had his papers published in. The impact factor deserves to die because, among other reasons, it attempts to condense multi-dimensional research efforts and the vagaries of scientific publishing into a single number that stands for some kind of prestige. But its users should be honest about its actual purpose: it was designed so evaluators could take one look at it and decide what to do about a candidate to whom it corresponded. This isn’t fair – but expeditiousness isn’t cheap.

And when evaluators at different rungs of the career advancement privilege the impact factor, scientists with more papers published earlier in their careers in journals with higher impact factors become exponentially likelier to be recognised for their efforts (probably even irrespective of their quality given the unique failings of high-IF journals, discussed here and here) over time than others.

Brian Skinner, a physicist at Ohio State University, recently presented a mathematical model of this ‘prestige bias’ and whose amplification depended in a unique way, according him, on a factor he called the ‘examination precision’. He found that the more ambiguously defined the barrier to advancement is, the more pronounced the prestige bias could get. Put another way, people who have the opportunity to maintain systemic discrimination simultaneously have an incentive to make the points of entry into their club as vague as possible. Sound familiar?

One might argue that the Nobel Prizes are awarded to people at the end of their careers – the average age of a physics laureate is in the late 50s; John Goodenough won the chemistry prize this year at 97 – so the prizes couldn’t possibly increase the likelihood of a future recognition. But the sword cuts both ways: the Nobel Prizes are likelier than not to be the products a prestige bias amplification themselves, and are therefore not the morally neutral symbols of excellence Hansson and his peers seem to think they are.

Fourth, the Nobel Prizes are an occasion to speak of science. This implies that those who would deride the prizes but at the same time hold them up are equally to blame, but I would agree only in part. This exhortation to try harder is voiced more often than not by those working in the West, with publications with better resources and typically higher purchasing power. On principle I can’t deride the decisions reporters and editors make in the process of building an audience for science journalism, with the hope that it will be profitable someday, all in a resource-constrained environment, even if some of those choices might seem irrational.

(The story of Brian Keating, an astrophysicist, could be illuminating at this juncture.)

More than anything else, what science journalism needs to succeed is a commonplace acknowledgement that science news is important – whether it’s for the better or the worse is secondary – and the Nobel Prizes do a fantastic job of getting the people’s attention towards scientific ideas and endeavours. If anything, journalists should seize the opportunity in October every year to also speak about how the prizes are flawed and present their readers with a fuller picture.

Finally, and of course, we have capitalism itself – implicated in the quantum of prize money accompanying each Nobel Prize (9 million Swedish kronor, Rs 6.56 crore or $0.9 million).

Then again, this figure pales in comparison to the amounts that academic institutions know they can rake in by instrumentalising the prestige in the form of donations from billionaires, grants and fellowships from the government, fees from students presented with the tantalising proximity to a Nobel laureate, and in the form of press coverage. L’affaire Epstein even demonstrated how it’s possible to launder a soiled reputation by investing in scientific research because institutions won’t ask too many questions about who’s funding them.

The Nobel Prizes are money magnets, and this is also why winning a Nobel Prize is like winning an Academy Award: you don’t get on stage without some lobbying. Each blade of grass has to mobilise its own PR machine, supported in all likelihood by the same institute that submitted their candidature to the laureates selection committee. The Nature editorial called this out thus:

As a small test case, Nature approached three of the world’s largest international scientific networks that include academies of science in developing countries. They are the International Science Council, the World Academy of Sciences and the InterAcademy Partnership. Each was asked if they had been approached by the Nobel awarding bodies to recommend nominees for science Nobels. All three said no.

I believe those arguments that serve to uphold the Nobel Prizes’ relevance must take recourse through at least one of these reasons, if not all of them. It’s also abundantly clear that the Nobel Prizes are important not because they present a fair or useful picture of scientific excellence but in spite of it.

Trouble at the doorstep

When an alumnus of the IISc wanted to organise an astrology workshop at the institute’s premises in 2017, students and various members of its teaching faculty rose in protest and wrote to the director to have the event cancelled, and it was cancelled. Their voices died down quickly after and didn’t emerge when astrology workshops popped up in other places around the city or even the country. The Union culture ministry launched a portal earlier in 2019 celebrating ‘ancient Indian knowledge’ that included essays on the ‘scientific validity’ of astrology penned by another IISc alumnus, and there wasn’t a peep.

And here we are again, when the institute’s students and some teachers have raised their voices against an event on mental wellbeing by the godman Sri Sri, scheduled to happen yesterday. There is certainly increasing – and never too late – awareness of the importance of access to good and timely mental healthcare for students in academic and research institutions, and props to the protestors for separating the right ways to respond to mental stresses and illnesses from the wrong.

However, these voices were silent until Sri Sri showed up at IISc’s doorstep and this I find troubling. With the astrology workshop, it seemed as if the protestors didn’t just draw a line between science and pseudoscience but also one between IISc and the rest of society, and reserved the expression of their disappointment towards pseudoscience inside IISc alone. That seems to be the case now as well: if there are conscientious people within IISc that are also motivated to collectivise and agitate (irrespective of how vehemently), their not doing so is only conspicuous by absence in other instances where it is similarly necessary.

(Deferring to the synecdoche) If IISc can rise up, it must rise up all the time. This isn’t a veiled caution against rising up altogether but to recall that selective outrage is irredeemably useless as well as to encourage students and practitioners of science to protest as often as they can – not just by pouring into the streets as they did when their funding was under threat but also for example writing against events and ideas they recognise to be dangerous – because their educational qualifications and academic situation vests theme with a measure of authority that non-scientists can’t passively accrue.