The circumstances in which scientists are science journos

On September 6, 2019, two researchers from Israel uploaded a preprint to the bioRxiv preprint server entitled ‘Can scientists fill the science journalism void? Online public engagement with two science stories authored by scientists’. Two news sites invited scientists to write science articles for them, supported by a short workshop at the start of the programme and then by a group of editors during the ideation and editing process. The two researchers tracked and analysed the results, concluding:

Overall significant differences were not found in the public’s engagement with the different items. Although, on one website there was a significant difference on two out of four engagement types, the second website did not have any difference, e.g., people did not click, like or comment more on items written by organic reporters than on the stories written by scientists. This creates an optimistic starting point for filling the science news void [with] scientists as science reporters.

Setting aside questions about the analysis’s robustness: I don’t understand the point of this study (insofar as it concerns scientists being published in news websites, not blogs), as a matter of principle. When was the optimism in question ever in doubt? And if it was, how does this preprint paper allay it?

The study aims to establish whether articles written by scientists can be just as successful – in terms of drawing traffic or audience engagement – as articles penned by trained journalists working in newsrooms. There are numerous examples that this is the case, and there are numerous other examples that this is not. But by discussing the results of their survey in a scientific paper, the authors seem to want to elevate the possibility that articles authored by scientists can perform well to a well-bounded result – which seems questionable at best, even if it is strongly confined to the Israeli market.

To take a charitable view, the study effectively reaffirms one part of a wider reality.

I strongly doubt there’s a specific underlying principle that suggests a successful outcome, at least beyond the mundane truism that the outcome is a combination of many things. From what I’ve seen in India, for example, the performance of a ‘performant article’ depends on the identity of the platform, the quality of its editors, the publication’s business model and its success, the writer’s sensibilities, the magnitude and direction of the writer’s moral compass, the writer’s fluency in the language and medium of choice, the features of the audience being targeted, and the article’s headline, length, time of publication and packaging.

It’s true that a well-written article will often perform better than average and a poorly written written article will perform worse than average, in spire of all these intervening factors, but these aren’t the only two states in which an article can exist. In this regard, claiming scientists “stand a chance” says nothing about the different factors in play and even less about why some articles won’t do well.

It also minimises editorial contributions. The two authors write in their preprint, “News sites are a competitive environment where scientists’ stories compete for attention with other news stories on hard and soft topics written by professional writers. Do they stand a chance?” This question ignores the publisher’s confounding self-interest: to maximise a story’s impact roughly proportional to the amount of labour expended to produce it, such as with the use of a social media team. More broadly, if there are fewer science journalists, there are also going to be fewer science editors (an event that precipitated the former will most likely precipitate the latter as well), which means there will also be fewer science stories written by anyone in the media.

Another issue here is something I can’t stress enough: science writers, communicators and journalists don’t have a monopoly on writing about science or scientists. The best science journalism has certainly been produced by reporters who have been science journalists for a while, but this is no reason to write off the potential for good journalism – in general – to produce stories that include science, nor to exclude such stories from analyses of how the people get their science news.

A simple example is environmental journalism in India. Thanks to prevalent injustices, many important nuggets of environmental and ecological knowledge appear in articles written by reporters working the social justice and political economics beats. This has an important lesson for science reporters and editors everywhere: not being employed full-time is typically a bitter prospect but your skills don’t have to manifest in stories that appear on pages or sections set aside for science news alone.

It also indicates that replenishing the workforce (even with free labour) won’t stave off the decline of science journalism – such as it is – as much as tackling deeper, potentially extra-scientific, issues such as parochialism and anti-intellectualism, and as a second step convincing both editors and marketers about the need to publish science journalism including and beyond considerations of profit.

Last, the authors further write:

This study examined whether readers reacted differently to science news items written by scientists as compared to news items written by organic reporters published on the same online news media sites. Generally speaking, based on our findings, the answer is no: audiences interacted similarly with both. This finding justifies the time and effort invested by the scientists and the Davidson science communication team to write attractive science stories, and justifies the resources provided by the news sites. Apparently if websites publish it, audiences will consume it.

An editor could have told you this in a heartbeat. Excluding audiences that consume content from niche outlets, and especially including audiences that flock to ‘destination’ sites (i.e. sites that cover nearly everything), authorship rarely ever matters unless the author is prominent or the publication highlights it. But while the Israeli duo has reason to celebrate this user behaviour, as it does, others have seen red.

For example, in December 2018, the Astronomy & Astrophysics journal published a paper by an Oxford University physicist named Jamie Farnes advancing a fanciful solution to the dark matter and dark energy problems. The paper was eventually widely debunked by scientists and science journalists alike but not before hundreds, if not thousands, of people were taken by an article in The Conversation that seemed to support the paper’s conclusions. What many of them – including some scientists – didn’t realise was that The Conversation often features scientists writing articles about their own work, and didn’t know the problem article had been written by Farnes himself.

So even if the preprint study skipped articles written by scientists about their own work, the duos’s “build it and they will come” inference is not generalisable, especially if – for another example – someone else from Oxford University had written favourably about Farnes’s paper. I regularly field questions from young scientist-writers baffled as to why I won’t publish articles that quote ‘independent’ scientists commenting on a study they didn’t participate in but which was funded, in part or fully, by the independent scientists’ employer(s).

I was hoping to neatly tie my observations together in a conclusion but some other work has come up, so I hope you won’t mind the abrupt ending as well as that, in the absence of a concluding portion, you won’t fall prey to the recency effect.

A composition of 300 13-second exposures taken within 70 minutes from Waldenburg, Germany, on August 12, 2018. Most of the lines are made by satellites reflecting sunlight from the Sun below the horizon. Caption and photo: Eckhard Slawik/IAU

Starlink and astronomy

SpaceX’s Starlink constellation is currently a network of 120+ satellites and which, in the next decade, will expand to 10,000+ to provide low-cost internet from space around the world. Astronomers everywhere have been pissed off with these instruments because they physically interfere with observations of the night sky, especially those undertaken by survey telescopes with wide fields of view, and some of whose signals could interfere electromagnetically with radio-astronomy.

In his resourceful new book The Consequential Frontier (2019), on “challenging the privatisation of space”, Peter Ward quotes James Vedda, senior policy analyst for the Centre for Space Policy and Strategy at the Aerospace Corporation, on the expansion of the American railroad in the 19th century:

Everybody likes to point to the railroad and say that, ‘Oh, back in the nineteenth century, when all this was all being built up, it was all built by the private sector.’ Well, hold on a minute. They didn’t do it alone because they were given huge amounts of land to lay their tracks and to build their stations. And not just a little strip of land wide enough for the tracks, they were usually given up to a mile on either side. … I read one estimate that in the nineteenth-century development of the railroads, the railroad companies were given land grants that if you total them all up together were equivalent to the size of Texas. They sold off all that extra land [and] they found that they got to keep the money. Besides that, the US Geological Survey went out and did this surveying for them and gave them the results for free so that is a significant cost that they didn’t have.

Ward extends Vedda’s comments to the activities of SpaceX and Blue Origin, the private American space companies stewarded by Elon Musk and Jeff Bezos, respectively. We’re not in the golden age of private spaceflight thanks to private enterprise. Instead, just like the Information Age owes itself to defence contracts awarded to universities and research labs during World War II and the Cold War, private operators owe themselves to profitable public-private partnerships funded substantially by federal grants and subsidies in the 1980s and 1990s. It would be doubly useful to bear this in mind when thinking about Starlink as well.

When Musk was confronted a month or so ago with astronomers’ complaints, he replied (via Twitter) that astronomers will have to launch more space telescopes “anyway”. This is not true, but even if it were, it recalls the relationship between private and public enterprise from over a century ago. As the user @cynosurae pointed out on Twitter, space telescopes are expensive (relative to ground-based instruments with similar capabilities and specifications) and they can only be built with government support in terms of land, resources and funds. That is, the consequences of Musk’s ambition – economists call them negative externalities – vis-à-vis the astronomy community can only be offset by taxpayer money.

Many Twitter users have been urging Musk to placate Starlink’s detractors by launching a telescope for them but science isn’t profitable except in the long-term. More importantly, the world’s astronomers are not likely to persuade the American government (whose FAA issues payload licenses and FCC regulates spectrum use) to force SpaceX to work with them, such as through the International Astronomical Union, which has offered its assistance, and keep Starlink from disrupting studies of the night sky.

It’s pertinent to remind ourselves at this juncture that while the consequences for astronomy have awakened us to SpaceX’s transgression, the root cause is not the availability of the night sky for unimpeded astronomical observations. That’s only the symptom; the deeper malaise is unilateral action to impact a resource that belongs to everyone.

Musk or anyone else can’t deny that their private endeavours often incur, and impose, costs that the gloss of private enterprise tends to pass over.

It wouldn’t matter if SpaceX is taken to court for its rivalrous use of the commons. Without the FAA, FCC or any other, even an international, body regulating satellite launches, orbital placement, mission profile, spectrum use, mission lifetime and – now – appearance, orbital space is going to get really crowded really fast. According to one projection, “between 2019 and 2028, more than 8,500 satellites will be launched, half of which will be to support broadband constellations, for a total market value of $42 billion”. SpaceX’s Falcon 9 rocket can already launch 60 Starlink satellites in one go; India and China have also developed new rockets to more affordably launch more small-sats more often.

A comparable regulatory leverage currently exists only with the International Telecommunications Union (ITU), which oversees spectrum use. It has awarded 1,800 orbital slots in the geosynchronous orbit to national telecom operators, such as FCC in the US and DoT in India. Regional operators register these slots and station telecommunication satellites there, each working with a predetermined set of frequencies.

Non-communication satellites as well as satellites in other orbits aren’t so formally organised. Satellite operators do work with the space and/or defence agencies of other countries to ensure their instruments don’t conflict with others in any way, in the interest of both self-preservation and debris mitigation. But beyond the ITU, no international body regulates satellite launches into any other orbits, and even the ITU doesn’t regulate any mission parameters beyond data transmission.

Starlink satellites will occupy the low-Earth (550 km and 1,150 km) and very-low-Earth orbits (340 km).

So an abundance of financial incentives, a dearth of policies and the complete absence of regulatory bodies allow private players a free run in space. Taking SpaceX to court at this juncture would miss the point (even if it were possible): the commons may have indirect financial value but their principal usefulness is centred on their community value, and which the US has undermined with its unilateral action. Musk has said his company will work with astronomers and observatories to minimise Starlink’s impact on their work but astronomers are understandably miffed that this offer wasn’t extended before launch and because absolute mitigation is highly unlikely with 12,000 (if not 42,000) satellites in orbit.

Taking a broader view, Starlink is currently the most visible constellation – literally and figuratively – but it’s not alone: space is only becoming more profitable, and other planned or functional constellations include Athena, Iridium and OneWeb. It would be in everyone’s best interests in this moment to get in front of this expansion and find a way to ensure all countries have equal access and opportunities to extract value from orbital space as well as equal stake in maintaining it as a shared resource.

In fact, like the debate between SpaceX and its supporters on the one hand and astronomers on the other has spotlighted what’s really at stake, it should also alert us that others should get to participate as well.

The bigger issue doesn’t concern astronomical observations – less interference with astronomical activity won’t make SpaceX’s actions less severe – nor low-cost internet (although one initial estimate suggests a neat $80, or Rs 5,750, per month) but of a distinctly American entity colonising a commons and preventing others from enjoying it. Governments – as in the institutions that make railroads, universities and subsidies possible – and not astronomers alone should decide, in consultation with their people as well as each other, what the next steps should be.

An edited version of this article appeared in The Wire on November 20, 2019.

Does Kangana have to look like J.J. to portray J.J.?

The poster for a new biographical feature about former Tamil Nadu Chief Minister J. Jayalalithaa is out, featuring Kangana Ranaut:

At first glance, it’s not evident that the woman in the picture is Ranaut, nor even Jayalalithaa, but in an uncanny valley in between both of them. Ranaut seems to be in some kind of fattening make-up[1] and her robes, a strange combination of sari and hospital gown, are worn inelegantly at best. But instead of asking if the film’s production team could have done a better job, it’s curious if these add-ons were necessary at all. I didn’t need the poster – and won’t need the film by extension – to tell me that that isn’t Jayalalithaa in the flesh, but the imperfection also prevents the suspension of my disbelief.

[1] If Ranaut wore neither a fat-suit nor other prosthetics or make-up to look fatter and instead gained weight, the question – why? – doesn’t change or go away. I’m sure creating and installing prosthetics and/or make-up on Monica Geller in Friends also took a lot of work, dedication and patience but it doesn’t make the show’s portrayal of fatness any less problematic.

Why do the actors portraying famous figures in biographical pictures have to look like those figures as well?

Ranaut in this regard is only the latest in a long line of actors. Famous and recent examples from Tamil cinema include Sathyaraj in and as Periyar (2007), Richard Madhuram in and as Kamaraj (2004) and Sayaji Shinde in and as Bharathi (2000). There are numerous examples from other film circuits as well, most recently Vivek Oberoi in and as PM Narendra Modi (2019) and Daniel Day-Lewis in and as Lincoln (2012). John Hurt’s The Elephant Man (1980) is perhaps the greatest example of all. However, Ranaut’s cosmetic affectation as Jayalalithaa has been imperfectly executed, which only asks whether it should have been done in the first place.

What obviously matters is whether the film’s audience can recognise who the character on-screen is. So then what has to be recreated to achieve this effect? Vito Corleone impersonators do the voice – as do people imitating Suruli Rajan or Nicholas Cage. Subramania Bharati’s turban and Periyar’s beard are both iconic. In Tamil Nadu at least, sporting such a turban or beard could invite comments on similarities between the wearer and these historic figures. The shortest route to recreational success is to pick one standout feature and replicate it.

Some of these attempts have looked ridiculous, of course, and represent not an attention to detail so much as an inability to discard the unimportant. Oberoi as PM Modi, and Anupam Kher as Manmohan Singh and Suzanne Bernert as Sonia Gandhi in The Accidental Prime Minister (2019), come swiftly to mind, together with Ashton Kutcher wearing a turtleneck sweater and, for some reason, walking on his toes around the Apple campus in Jobs (2013). The worst has to be Steve Carrell’s inexplicable nose[2] in his depiction of John Du Pont in Foxcatcher (2014). As Aisha Harris wrote in Slate:

If the person the actor is portraying had a distinctive look or physical attribute that is essential to their story, then it’s time to call in the prosthetics team. But if their looks have no bearing on the plot or on the movie’s themes, then don’t give them a second thought.

[2] Although Ocean’s Thirteen was released seven years earlier, Linus Caldwell’s defence of his prosthetic nose only brings Carrell’s Du Pont to mind when I watch it these days.

The actor’s and producers’ sense of fulfilment at having recreated a whole character in another person shouldn’t matter – but it has come to matter increasingly so with the advent of advanced cosmetic technologies. As a result, actors may also be compelled to participate in the shape-shifting exercise and hope to achieve an ostensibly complete transformation, sometimes (with The Accidental Prime Minister tripping over itself to offer examples) banking on appearances over acting itself. Their excuse might be that audiences are also anxious[3] to have famous people brought to life, to be able to scale walls of privacy and seclusion using the camera – i.e. the voyeurism that justifies the production and viewing of biopics.

[3] That the outer man is a picture of the inner, and the face an expression and revelation of the whole character, is a presumption likely enough in itself, and therefore a safe one to go on; borne out as it is by the fact that people are always anxious to see anyone who has made himself famous. – Arthur Schopenhauer

However, it’s not clear to me if this requires an actor to recreate the physical appearance of their chosen character to the point of completely eliding their own form, and whether such elision is worth celebrating for its technical rigour alone. The latter at least must fall on the wrong side of the line between the emergent complexity of acting and the subset, and more trivial, craft of imitation.[4] For example, it might be worth paying attention, when Thalaivi finally hits theatres in mid-2020, to how the film addresses Jayalalithaa’s fatness.

[4] A friend in college decided to sing AC/DC’s ‘Back In Black’ for his band’s performance at an event. After two days of near-continuous practice, he could recreate neither Brian Johnson’s freakishly high-pitched rendition nor the singer’s distinct Tyneside accent, and gave up and switched to ‘Paint It Black’ by Inkubus Sukkubus.

As Your Fat Friend elucidated in this essay, actors donning fat-suits has the effect of showing “a fat person’s pitiable and limited life”, realises “a mocking, cruel kind of comic relief”, “[chips] away at our collective ability to see fat people as fully human”, fuels “narratives [that] subtly assert that thin people know as much as (or more than) fat people do about what it’s like to be fat” and helps “thin people feel good about being thin” at the cost of accusing “fat people who stay fat” of “simply shirking their responsibility to create a body that would earn them respect”.

This is all what Thalaivi stands at risk of doing – and given Tamil cinema’s sensibilities on this issue as constructed in hundreds of films over the years, I don’t have my hopes up. At the same time, the fatness in question belonged to J. Jayalalithaa, a towering personality in the history of Tamil and Indian politics whose persona long ago transcended her physical appearance. Jayalalithaa was also a benevolent dictator of sorts, concentrated power within the party and closely controlled media narratives by restricting access to journalists. So if Thalaivi had the AIADMK’s favour in its production, it isn’t likely to be anything but laudatory, which in turn could leave the fatness unaddressed if only in an effort to be nice (instead of smart).

Finally, the question still stands: Why did Ranaut appear fatter in the first place? Couldn’t she have essayed Jayalalithaa as a thin person (which could be a more appropriate course of action if the film is going to sidestep Jayalalithaa’s use of steroids or the details of her poor health), or did the makers feel doing so would more evidently indicate their discomfort with the subject, or – most likely – they wanted to make as few changes as possible while transplanting a real story to the silver screen?

I wait with somewhat bated breath for June 2020, as well as for the two other productions revolving around Jayalalithaa’s life currently in the works: The Iron Lady starring Nithya Menen and Queen starring Ramya Krishnan.

A woman holder her right index finger over her lips, indicating silence.

Indian scicomm’s upside-down world

Imagine a big, poisonous tree composed of all the things you need to screw up to render a field, discipline or endeavour an elite club of just one demographic group. When it comes to making it more inclusive, whether by gender, race, ethnicity, etc., the lowest of low-hanging fruit on this tree is quantitative correction: increase the number of those people there aren’t enough of. Such a solution should emerge from any straightforward acknowledgment that a problem exists together with a need to be seen to be acting quickly.

Now, the lower the part of the tree, the easier it should be to address. There’s a corresponding suckiness figure here, denoted by the inverse of the relative height of the thing from the ground: not plucking low-hanging fruits and throwing them away is the suckiest thing because doing so would be the easiest thing. For example, the National Centre for Science Communicators (NCSC) recently organised an event composed entirely of men – i.e. a manel – and it was the suckiest thing because manels are the most fixable solutions available to address gender disparities in science and science communication without requiring any cultural remediation.

The lidless eye of @IndScicomm picked up on this travesty and called the NCSC out on Twitter, inadvertently setting off an avalanche of responses, each one more surprised than the last over the various things the NCSC has let slip in this one image. Apart from the sausage fest, for example, all eight men are older (no need to guess numbers, they all look like boomers).

It’s possible:

  1. Each one of these men, apart from the one from the organising body, wasn’t aware he was going to be on a manel,
  2. They don’t recognise that there’s a problem,
  3. They recognise the problem but simply don’t care that there aren’t any women among them – by itself a consideration that limits itself to the smallest modicum of change but in its entirety should include a variety of people of various genders and castes, or
  4. They believe the principles of science communication are agnostic of – rather transcend – the medium used, and the medium is what has changed the most since the boomers until the millennials.

I find the last two options most plausible (the first two are forms of moral abdication), and only the last one worth discussing, because it seems to be applicable to a variety of science communication endeavours being undertaken around India with a distinct whiff of bureaucracy.

In December 2018, one of the few great souls that quietly flag interesting things brought to my attention an event called the ‘Indian Science Communication Congress’ (ISCC), ep. 18, organised by CSIR NISCAIR and commemorating the 200th year of ‘science journalism in India’. What happened in 1818? According to Manoj Patairiya, the current director of NISCAIR, “Science journalism started in India in 1818 with the publication of monthly Digdarshan published in Hindi, Bengali and English, carrying a few articles on science and technology.” This is a fairly troublesome description because of its partly outdated definition of science journalism, at least if NISCAIR considers what Digdarshan did to be science journalism, and because the statement implies a continuous presence of communication efforts in the country from the early 19th century – which I doubt has been the case.

I didn’t attend the event – not because I wasn’t invited or that I didn’t know such an event existed but because I wouldn’t have been the ideal participant given the format:

It seems (including based on one attendee’s notes) the science communication congress was a science of science communication + historical review congress, the former a particularly dubious object of study for its scientistic attitude, and which the ISCC’s format upholds with barely contained irony. Perhaps there’s one more explanation: an ancient filtration system (such as from 1951, when NISCAIR was set up) broke but no one bothered to fix it – i.e. the government body responsible for having scientists speak up about their work is today doing the bare minimum it needs to to meet whatever its targets have been, which includes gathering scholars of science communication in a room and having them present papers about how they think it can be improved, instead of setting new targets for a new era. This is the principal symptom of directive-based change-making.

Then again, I might be misguided on the congress’s purpose. On two fairly recent occasions – in August 2018 and September 2019 – heart-in-the-right-place scientists have suggested they could launch a journal, of all things, to help popularise science. Is it because scientists in general have trouble seeing beyond journals vis-à-vis the ideal/easiest way to present knowledge (if such a thing even exists); because they believe other scientists will take them more seriously if they’re reaching out via a journal; or because writing for a journal allows them to justify how they’re spending their time with their superiors?

The constructive dilemma inherent in the possible inability to imagine a collection of articles beyond journals also hints at a possible inability to see beyond the written article. But with the medium have changed the messages as well, together with ways in which people are seeking new information. Moreover, by fixating on science communication as a self-contained endeavour that doesn’t manifest outside of channels earmarked for it, we risk ignoring science communication when it happens in new, even radical, environments.

For example, we’re all learning about the role archaeological findings play in the construction of historical narratives by questioning the Supreme Court’s controversial verdict on the Ayodhya title case. For another, I once learnt about why computational fluid dynamics struggles to simulate flowing water (because of how messed up the Navier-Stokes equations are) during a Twitch livestream.

But if manel-ridden conferences and poster presentations are what qualify as science communication, and not just support for it, the hyperobject of our consternation as represented in the replies to @IndScicomm’s tweet is as distinct a world as Earth is relative to Jupiter, and we might all just be banging our heads over the failures of a different species of poisonous tree. Maybe NCSC and NISCAIR, the latter more so, mean something else when they say ‘science communication’.

Maybe the ‘science communication’ that The Wire or The Print, etc. practice is a tradition imported from a different part of the world, with its own legacy, semantics and purpose, such as to be addressed to English-speaking, upper-class urbanites. At a talk in Chennai last year, for example, a prominent science communicator mentioned that there were only a handful of science journalists in India, which could’ve been true if he was reading only English-language newspapers. Maybe these labels are in passive conflict with the state-sponsored variety of ‘science journalism’ that the government nurtured shortly after Independence to cater to lower-class, Indian-languages-speaking citizens of rural India, which didn’t become profitable until the advent of economic liberalisation and the internet, but which today – and perhaps as seen from the PoV of a different audience – seems bureaucratic and insipid.

Then again, the rise of the ‘people’s science movement’ in the 1970s, led by organisations like Eklavya, Kalpavriksh, Vidushak Karkhana, Vigyan Shiksha Kendra and Medico Friend Circle would suggest that ‘science communication’ of the latter variety wasn’t entirely successful. Thanks also to Gauhar Raza, the scientist and social activist who spent years studying the impact of government-backed science communication initiatives and came away unable to tell if they had succeeded at all, and given what we’re seeing of NCSC’s, NISCAIR’s and the science congress’s activities, it may not be unreasonable to ask if the two ‘science communications’ are simply two different worlds or a new one still finding its footing and an older one whose use-case is rapidly diminishing.

Ultimately, let’s please stop inviting discussion on science communication through abstracts and research papers, organising “scientific sessions” for a science communication congress (which seems to be in the offing at a ‘science communicator’s meet’ at the 2020 Indian Science Congress as well) and having old men deliberate on “recent trends in science communication” – and turn an ear to practising communicators and journalists instead.

A Starlink satellite prepares for deployment from the second stage of a Falcon 9 rocket launched on November 11. Credit: SpaceX

Playing the devil’s advocate on Starlink

After SpaceX began to launch its Starlink satellite constellation to facilitate global internet coverage, astronomers began complaining that the satellites are likely to interfere with stargazing schemes, especially those of large, sensitive telescopes. Spaceflight stakeholders also began to worry, especially after SpaceX’s announcement that the Starlink constellation is in fact the precursor to a mega-constellation of at least 12,000 satellites, that it could substantially increase space traffic and complicate satellite navigation.

Neither of these concerns is unfounded, primarily because neither SpaceX nor the branch of the American government responsible for regulating payloads – so by extension the American government itself – should get to decide how to use a resource that belongs to the whole world by itself, without proper multi-stakeholder consultation. With Starlink as its instrument, and assuming the continued absence of proper laws to control how mega-constellations are to be designed and operated, SpaceX will effectively colonise a big chunk of the orbital shells around Earth. The community of astronomers has been especially vocal and agitated over Starlink’s consequences for its work, and a part of it has directed its protests against what it sees as SpaceX’s misuse of space as a global commons, and as a body of shared cultural heritage.

The idea of space as a public commons is neither new nor unique but the ideal has seldom been met. The lopsided development of spaceflight programmes around the world, but particularly in China and the US, attests to this. In the absence of an international space governance policy that is both rigid enough to apply completely to specific situations and flexible enough to adapt to rapid advancements in private spaceflight, people and businesses around the world are at the mercy of countries that possess launch vehicles, the regulatory bodies that oversee their operations and the relationship between the two (or more) governments. So space is currently physically available and profitable only to a select group of countries.

The peaceful and equitable enjoyment of space, going by the definition that astronomers find profitable, is another matter. Both the act and outcomes of stargazing are great sources of wonder for many, if not all, people while space itself is not diminished in any way by astronomers’ activities. NASA’s ‘Astronomy Picture of the Day’ platform has featured hundreds of spectacular shots of distant cosmological features captured by the Hubble Space Telescope, and news of the soon-to-be-launched James Webb Space Telescope is only met with awe and a nervous excitement over what new gems its hexagonal eyes will discover.

Astronomy often is and has been portrayed as an innocent and exploratory exercise that uncovers the universe’s natural riches, but closer to the ground, where the efforts of its practitioners are located, it is not so innocent. Indeed, it represents one of the major arms of modern Big Science, and one of Big Science’s principal demands is access to large plots of land, often characterised by its proponents as unused land or land deemed unprofitable for other purposes.

Consider Mauna Kea, the dormant volcano in Hawaii with a peak height of 4.2 km above sea level. Its top is encrusted with 13 telescopes, but where astronomers continued to see opportunity to build more (until the TMT became as controversial as it did), Native Hawaiians saw encroachment and destruction to an area they consider sacred. Closer home, one of the principle prongs of resistance to the India-based Neutrino Observatory, a large stationary detector that a national collaboration wants to install inside a small mountain, has been that its construction will damage the surrounding land – land that the collaboration perceives to be unused but which its opponents in Tamil Nadu (where the proposed construction site is located) see, given the singular political circumstances, as an increasingly precious and inviolable resource. This sentiment in turn draws on past and ongoing resistance to the Kudankulam nuclear power plant, the proposed ISRO launchpad at Kulasekarapattinam and the Sterlite copper-smelting plant in Tamil Nadu, and the Challakere ‘science city’ in Karnataka, all along the same lines.

Another way astronomy is problematic is in terms of its enterprise. That is, who operates the telescopes that will be most affected by the Starlink mega-constellation, and with whom do the resulting benefits accrue? Arguments of the ‘fix public transport first before improving spaceflight’ flavour are certainly baseless (for principles as well as practicalities detailed here) but it would be similarly faulty for a working definition of a global commons to originate from a community of astronomers located principally in the West, for whom clear skies are more profitable than access to low-cost internet.

More specifically, to quote Prakash Kashwan, a senior research fellow at the Earth System Governance Project:

The ‘good’ in public good refers to an ‘economic good’ or a thing – as in goods and services – that has two main characteristics: non-excludability and non-rivalry. Non-excludability refers to the fact that once a public good is provided, it is difficult to exclude individuals from enjoying its benefits even if they haven’t contributed to its provisioning. Non-rivalry refers to the fact that the consumption of a public good does not negatively impact other individuals’ ability to also benefit from a public good.

In this definition, astronomy (involving the use of ground-based telescopes) has often been exclusive, whether as a human industry in its need for land and designation of public goods as ‘useless’ or ‘unused’, or as a scientific endeavour, whereby its results accrue unevenly in society especially without public outreach, science communication, transparency, etc. Starlink, on the other hand, is obviously rivalrous.

There’s no question that by gunning for a mega-constellation of satellites enveloping Earth, Musk is being a bully (irrespective of his intentions) – but it’s also true that the prospect of low-cost internet promises to render space profitable to more people than is currently the case. So if arguments against his endeavour are directed along the trajectory that Starlink satellites damage, diminish access to and reduce the usefulness of some orbital regions around Earth, instead of against the US government’s unilateral decision to allow the satellites to be launched in the first place, it should be equally legitimate to claim that these satellites also enhance the same orbital regions by extracting more value from them.

Ultimately, the ‘problem’ is also at risk of being ‘resolved’ because Musk and astronomers have shaken hands on it. The issue isn’t whether astronomers should be disprivileged to help non-astronomers or vice versa, but to consider if astronomers’ comments on the virtues of astronomy gloss over their actions on the ground and – more broadly – to remember the cons of prioritising the character of space as a source of scientific knowledge over other, more germane opportunities, and to remind everyone that the proper course of action would be to do what neither Musk and the American government nor the astronomers have done at the moment. That is, undertake public consultation, such as with stakeholders in all countries party to the Outer Space Treaty, instead of assuming that de-orbiting or anything else for that matter is automatically the most favourable course of action.

New management at Nautilus

When an email landed in my inbox declaring that the beleaguered science communication magazine Nautilus would be “acquired by ownership group of super-fans”, I thought it was going to become a cooperative. It was only when I read the extended statement that I realised the magazine was undergoing a transformation that wasn’t at all new to the global media landscape.

A super-group of investors has come to Nautilus‘s rescue, bearing assurances that publisher John Steele repeats in the statement without any penitence for having stiffed its contributors for months on end, in some cases for over a year, for pieces already published: “Together we will work even harder to expand the public’s knowledge and understanding of fundamental questions of scientific inquiry, as well as their connection to human culture.” Steele also appears to be blind to the irony of his optimism when the “craven shit-eating” of private equity just sunk the amazing Deadspin (to quote from a suitably biting obituary by Alex Shephard).

The statement doesn’t mention whether the new investment covers pending payments and by when. In fact, the whole statement is obsessed with Nautilus‘s commitment to science in a tone that verges on cheerleading – and now and then crosses over too – which is bizarre because Nautilus is a science communication magazine, not a science magazine, so its cause, to use the term loosely, is to place science in the right context and on occasion even interrogate it. But the statement mentions an accompanying public letter entitled ‘Science Matters’. According to Steele,

The letter is a public commitment by the Nautilus team, its staff, advisors, and its contributors; leading thinkers, researchers, teachers, and businesspeople; and the public at large to tirelessly advance the cause of science in America and around the world.

Huh?

By itself such commitments don’t bode well (they’re awfully close to scientism) but they assume a frightening level of plausibility when read together with the list of investors. The latter includes Larry Summers, his wife Elisa New, and Nicholas White. One of the others, Fraser Howie, is listed as an “author” but according to his bio in the Nikkei Asian Review, “He has worked in China’s capital markets since 1992.” His authorship probably refers to his three books but they’re all about the Chinese financial system.

Everyone here is a (white) capitalist, most of them men. Call me cynical but something about this doesn’t sit well. For all the details in the statement of the investors’ institutional affiliations, it’s hard to imagine them sitting around a table and agreeing that Nautilus needs to be critical of, instead of sympathetic to, science – especially since the takeover will also transform the magazine from a non-profit to a for-profit endeavour.

The virtues of local travel

Here’s something I wish I’d read before overtourism and flygskam removed the pristine gloss of desirability from the selfies, 360º panoramas and videos the second-generation elites posted every summer on the social media:

It’s ok to prioritize friendships, community, and your mental health over travelling.

Amir Salihefendic, the head of a tech company, writes this after having moved from Denmark to Taiwan for a year, and reflects on the elements of working remotely, the toll it inevitably takes, and how the companies (and the people) that champion this mode of work often neglect to mention its unglamorous side.

Remote work works only if the company’s management culture is cognisant of it. It doesn’t work if one employee of a company that ‘extracts’ work by seating its people in physical proximity, such as in offices or even co-working spaces, chooses to work from another location. This is because, setting aside the traditional reasons for which people work in the presence of other people,  offices are also designed to institute conditions that maximise productivity and, ideally, minimise stress or mental turbulence.

But what Salihefendic wrote is also true for travelling, which he undertook by going from Denmark to Taiwan. Travelling here is an act that – in the form practiced by those who sustain the distinction between a place to work, or experience pain, and a place in which to experience pleasure – renders long-distance travel a class aspiration, and the ‘opposing’ short-distance travel a ‘lesser’ thing for not maintaining the same social isolation that our masculine cities do.

This is practically the Protestant ethic that Max Weber described in his analysis of the origins of capitalism, and which Silicon Valley dudebros dichotomised as ‘word hard, party harder’. And for once, it’s a good thing that this kind of living is out of reach of nearly 99% of humankind.

Exploring neighbourhood sites is more socio-economically and socio-culturally (and not just economically and just culturally) productive. Instead of creating distinct centres of pain and pleasure, of value creation and value dispensation, local travel can reduce the extent and perception of urban sprawl, contribute to hyperlocal economic development, birth social knowledge networks that enhance civilian engagement, and generally defend against the toll of extractive capitalism.

For example, in Bengaluru, I would like to travel from Malleshwaram to Yelahanka, or – in Chennai – from T Nagar to Kottivakkam, or – in Delhi – from Jor Bagh to Vasant Kunj, for a week or two at a time, and in each case exploring a different part of the city that might as well be a different city, characterised by a unique demographic distribution, public spaces, cuisine and civic issues. And when I do, I will still have my friends and access to my community and to the social support I need to maintain my mental health.

The calculus of creative discipline

Every moment of a science fiction story must represent the triumph of writing over world-building. World-building is dull. World-building literalises the urge to invent. World-building gives an unnecessary permission for acts of writing (indeed, for acts of reading). World-building numbs the reader’s ability to fulfil their part of the bargain, because it believes that it has to do everything around here if anything is going to get done. Above all, world-building is not technically necessary. It is the great clomping foot of nerdism.

Once I’m awake and have had my mug of tea, and once I’m done checking Twitter, I can quote these words of M. John Harrison from memory: not because they’re true – I don’t believe they are – but because they rankle. I haven’t read any writing of Harrison’s, I can’t remember the names of any of his books. Sometimes I don’t remember his name even, only that there was this man who uttered these words. Perhaps it is to Harrison’s credit that he’s clearly touched a nerve but I’m reluctant to concede anymore than this.

His (partial) quote reflects a narrow view of a wider world, and it bothers me because I remain unable to extend the conviction that he’s seeing only a part of the picture to the conclusion that he lacks imagination; as a writer of not inconsiderable repute, at least according to Wikipedia, I doubt he has any trouble imagining things.

I’ve written about the virtues of world-building before (notably here), and I intend to make another attempt in this post; I should mention what both attempts, both defences, have in common is that they’re not prescriptive. They’re not recommendations to others, they’re non-generalisable. They’re my personal reasons to champion the act, even art, of world-building; my specific loci of resistance to Harrison’s contention. But at the same time, I don’t view them – and neither should you – as inviolable or as immune to criticism, although I suspect this display of a willingness to reason may not go far in terms of eliminating subjective positions from this exercise, so make of it what you will.

There’s an idea in mathematical analysis called smoothness. Let’s say you’ve got a curve drawn on a graph, between the x- and y-axes, shaped like the letter ‘S’. Let’s say you’ve got another curve drawn on a second graph, shaped like the letter ‘Z’. According to one definition, the S-curve is smoother than the Z-curve because it has fewer sharp edges. A diligent high-schooler might take recourse through differential calculus to explain the idea. Say the Z-curve on the graph is the result of a function Z(x) = y. If you differentiate Z(x) where ‘x’ is the point on the x-axis where the Z-curve makes a sharp turn, the derivative Z'(x) has a value of zero. Such points are called critical points. The S-curve doesn’t have any critical points (except at the ends, but let’s ignore them); L-, and T-curves have one critical point each; P- and D-curves have two critical points each; and an E-curve has three critical points.

With the help of a loose analogy, you could say a well-written story is smooth à la an S-curve (excluding the terminal points): it it has an unambiguous beginning and an ending, and it flows smoothly in between the two. While I admire Steven Erikson’s Malazan Book of the Fallen series for many reasons, its first instalment is like a T-curve, where three broad plot-lines abruptly end at a point in the climax that the reader has been given no reason to expect. The curves of the first three books of J.K. Rowling’s Harry Potter series resemble the tangent function (from trigonometry: tan(x) = sin(x)/cosine(x)): they’re individually somewhat self-consistent but the reader is resigned to the hope that their beginnings and endings must be connected at infinity.

You could even say Donald Trump’s presidency hasn’t been smooth at all because there have been so many critical points.

Where world-building “literalises the urge to invent” to Harrison, it spatialises the narrative to me, and automatically spotlights the importance of the narrative smoothness it harbours. World-building can be just as susceptible to non-sequiturs and deus ex machinae as writing itself, all the way to the hubris Harrison noticed, of assuming it gives the reader anything to do, even enjoy themselves. Where he sees the “clomping foot of nerdism”, I see critical points in a curve some clumsy world-builder invented as they went along. World-building can be “dull” – or it can choose to reveal the hand-prints of a cave-dwelling people preserved for thousands of years, and the now-dry channels of once-heaving rivers that nurtured an ancient civilisation.

My principal objection to Harrison’s view is directed at the false dichotomy of writing and world-building, and which he seems to want to impose instead of the more fundamental and more consequential need for creative discipline. Let me borrow here from philosophy of science 101, specifically of the particular importance of contending with contradictory experimental results. You’ve probably heard of the replication crisis: when researchers tried to reproduce the results of older psychology studies, their efforts came a cropper. Many – if not most – studies didn’t replicate, and scientists are currently grappling with the consequences of overturning decades’ worth of research and research practices.

This is on the face of it an important reality check but to a philosopher with a deeper view of the history of science, the replication crisis also recalls the different ways in which the practitioners of science have responded to evidence their theories aren’t prepared to accommodate. The stories of Niels Bohr v. classical mechanicsDan Shechtman v. Linus Pauling and the EPR paradox come first to mind. Heck, the philosophers Karl Popper, Thomas Kuhn, Imre Lakatos and Paul Feyerabend are known for their criticisms of each other’s ideas on different ways to rationalise the transition from one moment containing multiple answers to the moment where one emerges as the favourite.

In much the same way, the disciplined writer should challenge themself instead of presuming the liberty to totter over the landscape of possibilities, zig-zagging between one critical point and the next until they topple over the edge. And if they can’t, they should – like the practitioners of good science – ask for help from others, pressing the conflict between competing results into the service of scouring the rust away to expose the metal.

For example, since June this year, I’ve been participating on my friend Thomas Manuel’s initiative in his effort to compose an underwater ‘monsters’ manual’. It’s effectively a collaborative world-building exercise where we take turns to populate different parts of a large planet with sizeable oceans, seas, lakes and numerous rivers with creatures, habitats and ecosystems. We broadly follow the same laws of physics and harbour substantially overlapping views of magic, but we enjoy the things we invent because they’re forced through the grinding wheels of each other’s doubts and curiosities, and the implicit expectation of one creator to make adequate room for the creations of the other.

I see it as the intersection of two functions: at first, their curves will criss-cross at a point, and the writers must then fashion a blending curve so a particle moving along one can switch to the other without any abruptness, without any of the tired melodrama often used to mask criticality. So the Kularu people are reminded by their oral traditions to fight for their rivers, so the archaeologists see through the invading Gezmin’s benevolence and into the heart of their imperialist ambitions.

An engraved bust of Alfred Nobel. Credit: sol_invictus/Flickr, CC BY 2.0

Why are the Nobel Prizes still relevant?

Note: A condensed version of this post has been published in The Wire.

Around this time last week, the world had nine new Nobel Prize winners in the sciences (physics, chemistry and medicine), all but one of whom were white and none were women. Before the announcements began, Göran Hansson, the Swede-in-chief of these prizes, had said the selection committee has been taking steps to make the group of laureates more racially and gender-wise inclusive, but it would seem they’re incremental measures, as one editorial in the journal Nature pointed out.

Hansson and co. seems to find the argument that the Nobel Prizes award achievements at a time where there weren’t many women in science tenable when in fact it distracts from the selection committee’s bizarre oversight of such worthy names as Lise Meitner, Vera Rubin, Chien-Shiung Wu, etc. But Hansson needs to understand that the only meaningful change is change that happens right away because, even for this significant flaw that should by all means have diminished the prizes to a contest of, for and by men, the Nobel Prizes have only marginally declined in reputation.

Why do they matter when they clearly shouldn’t?

For example, according to the most common comments received in response to articles by The Wire shared on Twitter and Facebook, and always from men, the prizes reward excellence, and excellence should brook no reservation, whether by caste or gender. As is likely obvious to many readers, this view of scholastic achievement resembles a blade of grass: long, sprouting from the ground (the product of strong roots but out of sight, out of mind), rising straight up and culminating in a sharp tip.

However, achievement is more like a jungle: the scientific enterprise – encompassing research institutions, laboratories, the scientific publishing industry, administration and research funding, social security, availability of social capital, PR, discoverability and visibility, etc. – incorporates many vectors of bias, discrimination and even harassment towards its more marginalised constituents. Your success is not your success alone; and if you’re an upper-caste, upper-class, English-speaking man, you should ask yourself, as many such men have been prompted to in various walks of life, who you might have displaced.

This isn’t a witch-hunt as much as an opportunity to acknowledge how privilege works and what we can do to make scientific work more equal, equitable and just in future. But the idea that research is a jungle and research excellence is a product of the complex interactions happening among its thickets hasn’t found meaningful purchase, and many people still labour with a comically straightforward impression that science is immune to social forces. Hansson might be one of them if his interview to Nature is anything to go by, where he says:

… we have to identify the most important discoveries and award the individuals who have made them. If we go away from that, then we’ve devalued the Nobel prize, and I think that would harm everyone in the end.

In other words, the Nobel Prizes are just going to look at the world from the top, and probably from a great distance too, so the jungle has been condensed to a cluster of pin-pricks.

Another reason why the Nobel Prizes haven’t been easy to sideline is that the sciences’ ‘blade of grass’ impression is strongly historically grounded, with help from notions like scientific knowledge spreads from the Occident to the Orient.

Who’s the first person that comes to mind when I say “Nobel Prize for physics”? I bet it’s Albert Einstein. He was so great that his stature as a physicist has over the decades transcended his human identity and stamped the Nobel Prize he won in 1921 with an indelible mark of credibility. Now, to win a Nobel Prize in physics is to stand alongside Einstein himself.

This union between a prize and its laureate isn’t unique to the Nobel Prize or to Einstein. As I’ve said before, prizes are elevated by their winners. When Margaret Atwood wins the Booker Prize, it’s better for the prize than it is for her; when Isaac Asimov won a Hugo Award in 1963, near the start of his career, it was good for him, but it was good for the prize when he won it for the sixth time in 1992 (the year he died). The Nobel Prizes also accrued a substantial amount of prestige this way at a time when it wasn’t much of a problem, apart from the occasional flareup over ignoring deserving female candidates.

That their laureates have almost always been from Europe and North America further cemented the prizes’ impression that they’re the ultimate signifier of ‘having made it’, paralleling the popular undercurrent among postcolonial peoples that science is a product of the West and that they’re simply its receivers.

That said, the prize-as-proxy issue has contributed considerably as well to preserving systemic bias at the national and international levels. Winning a prize (especially a legitimate one) accords the winner’s work with a modicum of credibility and the winner, of prestige. Depending on how the winners of a prize to be awarded suitably in the future are to be selected, such credibility and prestige could be potentiated to skew the prize in favour of people who have already won other prizes.

For example, a scientist-friend ranted to me about how, at a conference he had recently attended, another scientist on stage had introduced himself to his audience by mentioning the impact factors of the journals he’d had his papers published in. The impact factor deserves to die because, among other reasons, it attempts to condense multi-dimensional research efforts and the vagaries of scientific publishing into a single number that stands for some kind of prestige. But its users should be honest about its actual purpose: it was designed so evaluators could take one look at it and decide what to do about a candidate to whom it corresponded. This isn’t fair – but expeditiousness isn’t cheap.

And when evaluators at different rungs of the career advancement privilege the impact factor, scientists with more papers published earlier in their careers in journals with higher impact factors become exponentially likelier to be recognised for their efforts (probably even irrespective of their quality given the unique failings of high-IF journals, discussed here and here) over time than others.

Brian Skinner, a physicist at Ohio State University, recently presented a mathematical model of this ‘prestige bias’ and whose amplification depended in a unique way, according him, on a factor he called the ‘examination precision’. He found that the more ambiguously defined the barrier to advancement is, the more pronounced the prestige bias could get. Put another way, people who have the opportunity to maintain systemic discrimination simultaneously have an incentive to make the points of entry into their club as vague as possible. Sound familiar?

One might argue that the Nobel Prizes are awarded to people at the end of their careers – the average age of a physics laureate is in the late 50s; John Goodenough won the chemistry prize this year at 97 – so the prizes couldn’t possibly increase the likelihood of a future recognition. But the sword cuts both ways: the Nobel Prizes are likelier than not to be the products a prestige bias amplification themselves, and are therefore not the morally neutral symbols of excellence Hansson and his peers seem to think they are.

Fourth, the Nobel Prizes are an occasion to speak of science. This implies that those who would deride the prizes but at the same time hold them up are equally to blame, but I would agree only in part. This exhortation to try harder is voiced more often than not by those working in the West, with publications with better resources and typically higher purchasing power. On principle I can’t deride the decisions reporters and editors make in the process of building an audience for science journalism, with the hope that it will be profitable someday, all in a resource-constrained environment, even if some of those choices might seem irrational.

(The story of Brian Keating, an astrophysicist, could be illuminating at this juncture.)

More than anything else, what science journalism needs to succeed is a commonplace acknowledgement that science news is important – whether it’s for the better or the worse is secondary – and the Nobel Prizes do a fantastic job of getting the people’s attention towards scientific ideas and endeavours. If anything, journalists should seize the opportunity in October every year to also speak about how the prizes are flawed and present their readers with a fuller picture.

Finally, and of course, we have capitalism itself – implicated in the quantum of prize money accompanying each Nobel Prize (9 million Swedish kronor, Rs 6.56 crore or $0.9 million).

Then again, this figure pales in comparison to the amounts that academic institutions know they can rake in by instrumentalising the prestige in the form of donations from billionaires, grants and fellowships from the government, fees from students presented with the tantalising proximity to a Nobel laureate, and in the form of press coverage. L’affaire Epstein even demonstrated how it’s possible to launder a soiled reputation by investing in scientific research because institutions won’t ask too many questions about who’s funding them.

The Nobel Prizes are money magnets, and this is also why winning a Nobel Prize is like winning an Academy Award: you don’t get on stage without some lobbying. Each blade of grass has to mobilise its own PR machine, supported in all likelihood by the same institute that submitted their candidature to the laureates selection committee. The Nature editorial called this out thus:

As a small test case, Nature approached three of the world’s largest international scientific networks that include academies of science in developing countries. They are the International Science Council, the World Academy of Sciences and the InterAcademy Partnership. Each was asked if they had been approached by the Nobel awarding bodies to recommend nominees for science Nobels. All three said no.

I believe those arguments that serve to uphold the Nobel Prizes’ relevance must take recourse through at least one of these reasons, if not all of them. It’s also abundantly clear that the Nobel Prizes are important not because they present a fair or useful picture of scientific excellence but in spite of it.

Ad verecundiam

That Swedish group announced today that Esther Duflo, Abhijit Banerjee and Michael Kremer are the winners of this year’s Nobel Prize for economics. Within minutes, my Twitter feed was awash with congratulations as well as links to criticisms Duflo and Banerjee had voiced in the past against the economic policies of the Narendra Modi government. If nothing else, I can think of three motives on the part of those who shared these links: to draw traffic to certain news sites (i.e. the links had been shared by accounts belonging to news publishers), because the posters were deferring to the laureates’ reestablished authority to make a point, or to call attention to the fact that a woman had won a Nobel Prize. The first two are opportunistic and dicey at best. Setting aside for a moment the presumably small (if any) overlap between the group of people who shared the links to articles about Duflo’s and Banerjee’s work and the group of people who think the Nobel Prizes should be “cancelled” (to borrow Ed Yong’s word), using the Nobel Prizes to denote authority is to further cement the prizes’ undeserved place in the public consciousness of scholastic merit. Of course, lots of people are looking for the slightest opportunity to tell the Modi government it got something wrong – and both Banerjee and Duflo have admitted they couldn’t understand demonetisation, for starters – but using the Nobel Prizes to say “I told you so!” is not a free lunch. I don’t know what the alternatives could be; it’s certainly infeasible to think anyone could persuade mainstream Indian newsrooms to stop covering the announcement of the Nobel Prizes if only because it’s an excellent opportunity to talk/write about something in science and have your audience listen/read. We could try harder, but until we don’t, it also makes sense to criticise the Nobel Prizes while popularising them – and this is what’s missing in the social-media conversations shout-outs that seek to challenge one form of authority with another.