The gaudy-hued beast

When you wake up in the morning to news of four people who allegedly raped a woman having been shot to death by the police, it’s hard not to ask yourself what kind of country this is. It’s even harder when you see political leaders and celebrities publicly applauding this extra-judicial killing, sparing no thought for their passive rejection of the country’s justice system and endorsement of populist politics at its most abject.

As a journalist with a news organisation where impact is just as important as reach, if not more, and where conviction (rooted in facts and certain cultural sensibilities) is our coin, I also couldn’t help internalise a bit of failure for not having been able to effect change. After a team of two dozen people (on average), plus thousands of reporters and freelancers, spent nearly five years of labour and crores of rupees trying – among various things – to infuse more faith in democratic principles enshrined in the constitution, the breadth of episodes like the present one really highlight, in gaudy colours, the giant beast that confronts us.

Of course, this is somewhat self-aggrandising: some newspapers as well as numerous public and private institutions have been trying to improve the way people think for over a century. (I’m sure the idea that society simply awaits instructions on how to conduct itself is also very flawed, but I hope you know that’s not what I mean in this text.) Different people glimpse the true avatar of the challenges they face in different ways, and I glimpsed mine after starting at The Wire.

Anyway, as such disappointing episodes pile up, quickly surpassing the Ghaziabad landfill in volume as well as stench, the sensation of having failed is bound to become your best friend, and whose presence is easily compounded if your beat is not as eye-catching as politics or political economics. It affects your ability to think straight, encouraging you to accommodate misanthropic sentiments in your evaluation of other people and their words or actions, and interferes with the reward mechanisms that used to make you feel good every time you finished writing a story.

I don’t want to delineate how people deal with such emotions because, and after insisting that that there are ways to deal with such emotions, I think there is very little acknowledgment in the first place that such an issue even exists. Organisations (at least English-language newsrooms in India) that employ journalists don’t openly discuss the sort of mental make-up a person needs to remain resilient, confident and productive at once, to be able to retain enough of their conviction and strength in the face of repeated setbacks. As far as I know, there are no institutional mechanisms of redressal either.

The bit about confidence is particularly important if only because a journalism of pessimism, an endeavour utterly incapable of imagining a better future, can only be corrosive to society, and it bodes even worse for a journalist on the job to spiral into cynicism as a result of their work. So as I have no doubt that the gaudy-hued beast that looms in front of us is only going to get bigger and badder if India’s socio-political culture continues to stagnate in its current form, I also hope that people – especially, but not only, employers – recognise that not everyone can be a healthy journalist all the time. And when they’re not, it would be great, for starters, to talk about it.

Featured image credit: Donovan Reeves/Unsplash. Effects: PHOTOMOSH.

A windier world

A new paper in Nature Climate Change reports a reversal in “terrestrial stilling” since 2010 – i.e. global wind speeds, thought to be in decline thanks to deforestation and real estate development, actually stopped slowing around 2010 and have been climbing since.

The paper’s authors, a group of researchers from China, France, Singapore, Spain, the UK and the US, argue that the result can be explained by “decadal ocean-atmosphere oscillations” and conclude with further analysis that the increase “has increased potential wind energy by 17 ± 2% for 2010 to 2017, boosting the US wind power capacity factor by ~2.5% and explains half the increase in the US wind capacity factor since 2010.”

Now that we have some data to support the theory that both terrestrial and oceanic processes affect wind speeds and to what extent, the authors propose building models to predict wind speeds in advance and engineer wind turbines accordingly to maximise power generation.

This seems like a silver lining but it isn’t.

Global heating does seem to be influencing wind speeds. To quote from the paper again: “The ocean-atmosphere oscillations, characterised as the decadal variations in [mainly three climate indices] can therefore explain the decadal variation in wind speed (that is, the long-term stilling and the recent reversal).” This in turn empowers wind turbines to produce more energy and correspondingly lowers demand from non-renewable sources.

DOI: 10.1038/s41558-019-0622-6

However, three of the major sources of greenhouse gas emissions are concrete, plastics and steel manufacturing – and all three materials are required in not insubstantial quantities to build a wind turbine. So far from being a happy outcome of global heating, the increase in average regional wind speed – which the authors say could last for up to a decade – could drive the construction of more or, significantly, different turbines which in turn causes more greenhouses gases to be released into the atmosphere.

Finally, while the authors estimate the “global mean annual wind speed” increased from 3.13 m/s in 2010 to 3.3 m/s in 2017, the increase in the amount of energy entering a wind turbine is distributed unevenly by location: “22 ± 2% for North America, 22 ± 4% for Europe and 11 ± 4% for Asia”. Assuming these calculations are reliable, the figures suggest industrialised nations have a stronger incentive to capitalise on the newfound stilling reversal (from the same paper: “We find that the capacity factor for wind generation in the US is highly and significantly correlated with the variation in the cube of regional-average wind speed”).

On the other hand Asia, which still has a weaker incentive, will continue to bear a disproportionate brunt of the climate crisis. To quote from an article published in The Wire Science today,

… as it happens, the idea that ‘green technology’ can help save the environment is dangerous because it glosses over the alternatives’ ills. In a bid to reduce the extraction of hydrocarbons for fuel as well as to manufacture components for more efficient electronic and mechanical systems, industrialists around the world have been extracting a wide array of minerals and metals, destroying entire ecosystems and displacing hundreds of thousands of people. It’s as if one injustice has replaced another.

Godwin Vasanth Bosco, The Wire Science, December 2, 2019

The circumstances in which scientists are science journos

On September 6, 2019, two researchers from Israel uploaded a preprint to the bioRxiv preprint server entitled ‘Can scientists fill the science journalism void? Online public engagement with two science stories authored by scientists’. Two news sites invited scientists to write science articles for them, supported by a short workshop at the start of the programme and then by a group of editors during the ideation and editing process. The two researchers tracked and analysed the results, concluding:

Overall significant differences were not found in the public’s engagement with the different items. Although, on one website there was a significant difference on two out of four engagement types, the second website did not have any difference, e.g., people did not click, like or comment more on items written by organic reporters than on the stories written by scientists. This creates an optimistic starting point for filling the science news void [with] scientists as science reporters.

Setting aside questions about the analysis’s robustness: I don’t understand the point of this study (insofar as it concerns scientists being published in news websites, not blogs), as a matter of principle. When was the optimism in question ever in doubt? And if it was, how does this preprint paper allay it?

The study aims to establish whether articles written by scientists can be just as successful – in terms of drawing traffic or audience engagement – as articles penned by trained journalists working in newsrooms. There are numerous examples that this is the case, and there are numerous other examples that this is not. But by discussing the results of their survey in a scientific paper, the authors seem to want to elevate the possibility that articles authored by scientists can perform well to a well-bounded result – which seems questionable at best, even if it is strongly confined to the Israeli market.

To take a charitable view, the study effectively reaffirms one part of a wider reality.

I strongly doubt there’s a specific underlying principle that suggests a successful outcome, at least beyond the mundane truism that the outcome is a combination of many things. From what I’ve seen in India, for example, the performance of a ‘performant article’ depends on the identity of the platform, the quality of its editors, the publication’s business model and its success, the writer’s sensibilities, the magnitude and direction of the writer’s moral compass, the writer’s fluency in the language and medium of choice, the features of the audience being targeted, and the article’s headline, length, time of publication and packaging.

It’s true that a well-written article will often perform better than average and a poorly written written article will perform worse than average, in spire of all these intervening factors, but these aren’t the only two states in which an article can exist. In this regard, claiming scientists “stand a chance” says nothing about the different factors in play and even less about why some articles won’t do well.

It also minimises editorial contributions. The two authors write in their preprint, “News sites are a competitive environment where scientists’ stories compete for attention with other news stories on hard and soft topics written by professional writers. Do they stand a chance?” This question ignores the publisher’s confounding self-interest: to maximise a story’s impact roughly proportional to the amount of labour expended to produce it, such as with the use of a social media team. More broadly, if there are fewer science journalists, there are also going to be fewer science editors (an event that precipitated the former will most likely precipitate the latter as well), which means there will also be fewer science stories written by anyone in the media.

Another issue here is something I can’t stress enough: science writers, communicators and journalists don’t have a monopoly on writing about science or scientists. The best science journalism has certainly been produced by reporters who have been science journalists for a while, but this is no reason to write off the potential for good journalism – in general – to produce stories that include science, nor to exclude such stories from analyses of how the people get their science news.

A simple example is environmental journalism in India. Thanks to prevalent injustices, many important nuggets of environmental and ecological knowledge appear in articles written by reporters working the social justice and political economics beats. This has an important lesson for science reporters and editors everywhere: not being employed full-time is typically a bitter prospect but your skills don’t have to manifest in stories that appear on pages or sections set aside for science news alone.

It also indicates that replenishing the workforce (even with free labour) won’t stave off the decline of science journalism – such as it is – as much as tackling deeper, potentially extra-scientific, issues such as parochialism and anti-intellectualism, and as a second step convincing both editors and marketers about the need to publish science journalism including and beyond considerations of profit.

Last, the authors further write:

This study examined whether readers reacted differently to science news items written by scientists as compared to news items written by organic reporters published on the same online news media sites. Generally speaking, based on our findings, the answer is no: audiences interacted similarly with both. This finding justifies the time and effort invested by the scientists and the Davidson science communication team to write attractive science stories, and justifies the resources provided by the news sites. Apparently if websites publish it, audiences will consume it.

An editor could have told you this in a heartbeat. Excluding audiences that consume content from niche outlets, and especially including audiences that flock to ‘destination’ sites (i.e. sites that cover nearly everything), authorship rarely ever matters unless the author is prominent or the publication highlights it. But while the Israeli duo has reason to celebrate this user behaviour, as it does, others have seen red.

For example, in December 2018, the Astronomy & Astrophysics journal published a paper by an Oxford University physicist named Jamie Farnes advancing a fanciful solution to the dark matter and dark energy problems. The paper was eventually widely debunked by scientists and science journalists alike but not before hundreds, if not thousands, of people were taken by an article in The Conversation that seemed to support the paper’s conclusions. What many of them – including some scientists – didn’t realise was that The Conversation often features scientists writing articles about their own work, and didn’t know the problem article had been written by Farnes himself.

So even if the preprint study skipped articles written by scientists about their own work, the duos’s “build it and they will come” inference is not generalisable, especially if – for another example – someone else from Oxford University had written favourably about Farnes’s paper. I regularly field questions from young scientist-writers baffled as to why I won’t publish articles that quote ‘independent’ scientists commenting on a study they didn’t participate in but which was funded, in part or fully, by the independent scientists’ employer(s).

I was hoping to neatly tie my observations together in a conclusion but some other work has come up, so I hope you won’t mind the abrupt ending as well as that, in the absence of a concluding portion, you won’t fall prey to the recency effect.

The imperfection of strontium titanate

When you squeeze some crystals, you distort their lattice of atoms just enough to separate a pair of charged particles and that in turn gives rise to a voltage. Such materials are called piezoelectric crystals. Not all crystals are piezoelectric because the property depends on what the arrangement of atoms in the lattice is.

For example, the atoms of strontium, titanium and oxygen are arranged in a cubic structure to form strontium titanate (SrTiO3) such that each molecule displays a mirror symmetry through its centre. That is, if you placed a mirror passing through the molecule’s centre, the object plus its reflection would show the molecule as it actually is. Such molecules are said to be centrosymmetric, and centrosymmetric crystals aren’t piezoelectric.

In fact, strontium titanate isn’t ferroelectric or pyroelectric either – an external electric field can’t reverse their polarisation nor do they produce a voltage when they’re heated or cooled – for the same reason. Its crystal lattice is just too symmetrical.

The strontium titanate lattice. Oxygen atoms are red, titanium cations are blue and strontium cations are green.

However, scientists haven’t been deterred by this limitation (such as it is) because its perfect symmetry indicates that messing with the symmetry can introduce new properties in the material. There are also natural limits to the lattice itself. A cut and polished diamond looks beautiful because, at its surface, the crystal lattice ends and the air begins – arbitrarily stopping the repetitive pattern of carbon atoms.

An infinite diamond that occupies all points in the universe might look good on paper but it wouldn’t be nearly as resplendent because only the symmetry-breaking at the surface allows light to enter the crystal and bounce around. Similarly, centrosymmetric strontium titanate might be a natural wonder, so to speak, but the centrosymmetry also keeps it from being useful (despite its various unusual properties; e.g. it was the first insulator found to be a superconductor at low temperatures, in 1967).

Tausonite, a naturally occurring mineral form of strontium titanate. Credit: Materialscientist/Wikimedia Commons, CC BY-SA 3.0

So does strontium titanate exhibit pyro- or piezoelectricity on its surface? Surprisingly, while this seems like a fairly straightforward question to ask, it hasn’t been straightforward to answer.

A part of the problem is the definition of a surface. Obviously, the surface of any object refers to the object’s topmost or outermost layer. But when you’re talking about, say, a small electric current originating from the material, it’s difficult to imagine how you could check if the current originated from the bulk of the material or just the surface.

Researchers from the US, Denmark and Israel recently reported resolving this problem using concepts from thermodynamics 101. If the surface of strontium titanate is pyroelectric, the presence of electric currents should co-exist with heat. So if a bit of heat is applied and taken away, the material should begin cooling (or thermalising) and the electric currents should also dissipate. The faster the material cools, the faster the currents dissipate, and the faster the currents dissipate, the lower the depth to which the material is pyroelectric.

In effect, the researchers induced pyroelectricity and then tracked how quickly it vanished to infer how deeply inside the material it existed.

Both the bulk and the surface are composed of the same atoms, but the atomic lattice on the surface also has a bit of surface tension. Materials scientists have already calculated how deeply this tension penetrates the surface of strontium titanate, so the question was also whether the pyroelectric behaviour was contained in this region or went beyond, into the rest of the bulk.

The team sandwiched a slab of strontium titanate between two electrodes, at room temperature. At the crystal-electrode interface, which is a meeting of two surfaces, opposing charged particles on either side gather and neutralise themselves. But when an infrared laser is shined on the ensemble (as shown above), the surface of strontium titanate heats up and develops a voltage, which in turn draws the charges at its surface away from the interface. The charges in the electrode are then left without a partner so they flow through a wire connected to the other electrode and create a current.

The laser is turned off and the strontium titanate’s surface begins to cool. Its voltage drops and allows the charged particles to move away from each other, and some of them move towards the surface to once again neutralise oppositely charged particles from the other side. This process stops the current. So measuring how quickly the current drops off gives away how quickly the voltage vanishes, which gives away how much of the material’s volume developed a voltage due to the pyroelectric effect.

The penetration depth the group measured was in line with the calculations based on surface tension: about 1.2 nm. To be sure the effect didn’t involve the bulk, the researchers repeated the experiment with a thin layer of silica (the major component of sand) on top of the strontium titanate surface, and there was no electric current when the laser was on or off.

In fact, according to a report in Nature, the team also took various precautions to ensure any electric effects originated only from the surface, and due to effects intrinsic to the material itself.

… they checked that the direction of the heat-induced current does not depend on the orientation of the crystal, ruling out a bulk effect; and that the local heating produced by the laser is very small…, which means that the strain gradients induced by thermal expansion are insignificant. Other experiments and data analysis were carried out to exclude the possibility that the induced current is due to molecules … adsorbed to the surface, charges trapped by lattice defects, excitation of free electrons induced by light, or the thermoelectric Seebeck effect (which generates currents in semiconductors that contain temperature gradients).

Now we know strontium titanate is pyroelectric, and piezoelectric, on its surface at room temperature – but this is not all we know. During their experiments (with different samples of the crystal), the researchers spotted something odd:

The pyroelectric coefficient – a measure of the strength of the material’s pyroelectricity – was constant between 193 K and 225 K (–80.15º C to –48.15º C) but dropped sharply above 225 K and vanished above 380 K. The researchers note in their paper, published on September 18, that others have previously reported that the strontium titanate lattice near the surface changes from a cubic to a tetragonal structure at around 150 K, and that a similar transformation could be happening at 225 K.

In other words, the surface pyroelectric effect wasn’t just producing a voltage but could in fact be altering the relative arrangement of atoms itself. What the precise mechanism of action could be we don’t know – nor any other features that might arise in the material as a result. The researchers hope future studies can resolve these questions.

A composition of 300 13-second exposures taken within 70 minutes from Waldenburg, Germany, on August 12, 2018. Most of the lines are made by satellites reflecting sunlight from the Sun below the horizon. Caption and photo: Eckhard Slawik/IAU

Starlink and astronomy

SpaceX’s Starlink constellation is currently a network of 120+ satellites and which, in the next decade, will expand to 10,000+ to provide low-cost internet from space around the world. Astronomers everywhere have been pissed off with these instruments because they physically interfere with observations of the night sky, especially those undertaken by survey telescopes with wide fields of view, and some of whose signals could interfere electromagnetically with radio-astronomy.

In his resourceful new book The Consequential Frontier (2019), on “challenging the privatisation of space”, Peter Ward quotes James Vedda, senior policy analyst for the Centre for Space Policy and Strategy at the Aerospace Corporation, on the expansion of the American railroad in the 19th century:

Everybody likes to point to the railroad and say that, ‘Oh, back in the nineteenth century, when all this was all being built up, it was all built by the private sector.’ Well, hold on a minute. They didn’t do it alone because they were given huge amounts of land to lay their tracks and to build their stations. And not just a little strip of land wide enough for the tracks, they were usually given up to a mile on either side. … I read one estimate that in the nineteenth-century development of the railroads, the railroad companies were given land grants that if you total them all up together were equivalent to the size of Texas. They sold off all that extra land [and] they found that they got to keep the money. Besides that, the US Geological Survey went out and did this surveying for them and gave them the results for free so that is a significant cost that they didn’t have.

Ward extends Vedda’s comments to the activities of SpaceX and Blue Origin, the private American space companies stewarded by Elon Musk and Jeff Bezos, respectively. We’re not in the golden age of private spaceflight thanks to private enterprise. Instead, just like the Information Age owes itself to defence contracts awarded to universities and research labs during World War II and the Cold War, private operators owe themselves to profitable public-private partnerships funded substantially by federal grants and subsidies in the 1980s and 1990s. It would be doubly useful to bear this in mind when thinking about Starlink as well.

When Musk was confronted a month or so ago with astronomers’ complaints, he replied (via Twitter) that astronomers will have to launch more space telescopes “anyway”. This is not true, but even if it were, it recalls the relationship between private and public enterprise from over a century ago. As the user @cynosurae pointed out on Twitter, space telescopes are expensive (relative to ground-based instruments with similar capabilities and specifications) and they can only be built with government support in terms of land, resources and funds. That is, the consequences of Musk’s ambition – economists call them negative externalities – vis-à-vis the astronomy community can only be offset by taxpayer money.

Many Twitter users have been urging Musk to placate Starlink’s detractors by launching a telescope for them but science isn’t profitable except in the long-term. More importantly, the world’s astronomers are not likely to persuade the American government (whose FAA issues payload licenses and FCC regulates spectrum use) to force SpaceX to work with them, such as through the International Astronomical Union, which has offered its assistance, and keep Starlink from disrupting studies of the night sky.

It’s pertinent to remind ourselves at this juncture that while the consequences for astronomy have awakened us to SpaceX’s transgression, the root cause is not the availability of the night sky for unimpeded astronomical observations. That’s only the symptom; the deeper malaise is unilateral action to impact a resource that belongs to everyone.

Musk or anyone else can’t deny that their private endeavours often incur, and impose, costs that the gloss of private enterprise tends to pass over.

It wouldn’t matter if SpaceX is taken to court for its rivalrous use of the commons. Without the FAA, FCC or any other, even an international, body regulating satellite launches, orbital placement, mission profile, spectrum use, mission lifetime and – now – appearance, orbital space is going to get really crowded really fast. According to one projection, “between 2019 and 2028, more than 8,500 satellites will be launched, half of which will be to support broadband constellations, for a total market value of $42 billion”. SpaceX’s Falcon 9 rocket can already launch 60 Starlink satellites in one go; India and China have also developed new rockets to more affordably launch more small-sats more often.

A comparable regulatory leverage currently exists only with the International Telecommunications Union (ITU), which oversees spectrum use. It has awarded 1,800 orbital slots in the geosynchronous orbit to national telecom operators, such as FCC in the US and DoT in India. Regional operators register these slots and station telecommunication satellites there, each working with a predetermined set of frequencies.

Non-communication satellites as well as satellites in other orbits aren’t so formally organised. Satellite operators do work with the space and/or defence agencies of other countries to ensure their instruments don’t conflict with others in any way, in the interest of both self-preservation and debris mitigation. But beyond the ITU, no international body regulates satellite launches into any other orbits, and even the ITU doesn’t regulate any mission parameters beyond data transmission.

Starlink satellites will occupy the low-Earth (550 km and 1,150 km) and very-low-Earth orbits (340 km).

So an abundance of financial incentives, a dearth of policies and the complete absence of regulatory bodies allow private players a free run in space. Taking SpaceX to court at this juncture would miss the point (even if it were possible): the commons may have indirect financial value but their principal usefulness is centred on their community value, and which the US has undermined with its unilateral action. Musk has said his company will work with astronomers and observatories to minimise Starlink’s impact on their work but astronomers are understandably miffed that this offer wasn’t extended before launch and because absolute mitigation is highly unlikely with 12,000 (if not 42,000) satellites in orbit.

Taking a broader view, Starlink is currently the most visible constellation – literally and figuratively – but it’s not alone: space is only becoming more profitable, and other planned or functional constellations include Athena, Iridium and OneWeb. It would be in everyone’s best interests in this moment to get in front of this expansion and find a way to ensure all countries have equal access and opportunities to extract value from orbital space as well as equal stake in maintaining it as a shared resource.

In fact, like the debate between SpaceX and its supporters on the one hand and astronomers on the other has spotlighted what’s really at stake, it should also alert us that others should get to participate as well.

The bigger issue doesn’t concern astronomical observations – less interference with astronomical activity won’t make SpaceX’s actions less severe – nor low-cost internet (although one initial estimate suggests a neat $80, or Rs 5,750, per month) but of a distinctly American entity colonising a commons and preventing others from enjoying it. Governments – as in the institutions that make railroads, universities and subsidies possible – and not astronomers alone should decide, in consultation with their people as well as each other, what the next steps should be.

An edited version of this article appeared in The Wire on November 20, 2019.

The press office

A press-officer friend recently asked me for pointers on how he could help journalists cover the research institute he now works at better. My response follows:

  1. Avoid the traditional press release format and use something like Axios’s. answer the key questions, nothing more. No self-respecting organisation is going to want to republish press releases. This way also saves you time.
  2. Make scientists from within the institute, especially women, members of minority groups and postdocs, available for comment – whether on their own research or on work by others. This means keeping them available (at certain times if need be) and displaying their contact information.
  3. If you’re going to publish blogs, it would be great if they’re on a CC BY or BY-SA (or even something a little more restrictive like CC BY NC ND) license so that interested news organisations can republish them. If you’re using the ND license, please ensure the copy is clear.
  4. Pictures are often an issue. If you could take some nice pics on your phone and post them on, say, the CC library on Flickr, that would be great. These can be pics of the institute, instruments, labs, important people, events, etc.

If you have inputs/comments for my friend and subscribe to this blog, simply reply to the email in your inbox containing this post and you’ll reach me.

Two things

First

As a professional science journalist, I’ve accrued a long list of ‘contacts’ in India and abroad, so whenever I discuss my career prospects with friends, I’m often told that I’m well-setup to become a freelancer. However, I recently realised I might be a terrible freelancer, mostly because I am my own writer. By this, I mean that what I write is only partly under my conscious control. I can, for example, decide to write article X this way or that, but I can’t force myself to write article Y when my brain/mind complex wants to get article X out first. Second, I mean that I write only when I feel like writing. When I have to write but don’t feel like it, I write like shit. The words don’t flow, the thought-process is constipated, and there’s such an obvious lack of imagination that I become anxious in the course of writing as to how the article is going to turn out, and write worse as a result. I think I would prefer to have a full-time job where I won’t be penalised for dry patches.

Second

The political events of the last few months have affected me more than I’ve cared to admit. I have been looking since this morning for a line I read somewhere last week, written by someone I can’t remember. It’s about how we – the people of the world – are currently living through a time when we’re being forced to reckon with the fact that our public institutions, while being designed to protect democracy and our constitutional rights, are surprisingly (but also not surprisingly) ineffectual at keeping tyranny and/or fascism in check. The repeated assertions of the truth of this statement, most recently in Mumbai and then at the Supreme Court, have inspired a weariness that’s even resisted all attempts to work harder through it. I feel like the wheels of a train moving through a regenerative brake that the driver won’t stop applying.

Does Kangana have to look like J.J. to portray J.J.?

The poster for a new biographical feature about former Tamil Nadu Chief Minister J. Jayalalithaa is out, featuring Kangana Ranaut:

At first glance, it’s not evident that the woman in the picture is Ranaut, nor even Jayalalithaa, but in an uncanny valley in between both of them. Ranaut seems to be in some kind of fattening make-up[1] and her robes, a strange combination of sari and hospital gown, are worn inelegantly at best. But instead of asking if the film’s production team could have done a better job, it’s curious if these add-ons were necessary at all. I didn’t need the poster – and won’t need the film by extension – to tell me that that isn’t Jayalalithaa in the flesh, but the imperfection also prevents the suspension of my disbelief.

[1] If Ranaut wore neither a fat-suit nor other prosthetics or make-up to look fatter and instead gained weight, the question – why? – doesn’t change or go away. I’m sure creating and installing prosthetics and/or make-up on Monica Geller in Friends also took a lot of work, dedication and patience but it doesn’t make the show’s portrayal of fatness any less problematic.

Why do the actors portraying famous figures in biographical pictures have to look like those figures as well?

Ranaut in this regard is only the latest in a long line of actors. Famous and recent examples from Tamil cinema include Sathyaraj in and as Periyar (2007), Richard Madhuram in and as Kamaraj (2004) and Sayaji Shinde in and as Bharathi (2000). There are numerous examples from other film circuits as well, most recently Vivek Oberoi in and as PM Narendra Modi (2019) and Daniel Day-Lewis in and as Lincoln (2012). John Hurt’s The Elephant Man (1980) is perhaps the greatest example of all. However, Ranaut’s cosmetic affectation as Jayalalithaa has been imperfectly executed, which only asks whether it should have been done in the first place.

What obviously matters is whether the film’s audience can recognise who the character on-screen is. So then what has to be recreated to achieve this effect? Vito Corleone impersonators do the voice – as do people imitating Suruli Rajan or Nicholas Cage. Subramania Bharati’s turban and Periyar’s beard are both iconic. In Tamil Nadu at least, sporting such a turban or beard could invite comments on similarities between the wearer and these historic figures. The shortest route to recreational success is to pick one standout feature and replicate it.

Some of these attempts have looked ridiculous, of course, and represent not an attention to detail so much as an inability to discard the unimportant. Oberoi as PM Modi, and Anupam Kher as Manmohan Singh and Suzanne Bernert as Sonia Gandhi in The Accidental Prime Minister (2019), come swiftly to mind, together with Ashton Kutcher wearing a turtleneck sweater and, for some reason, walking on his toes around the Apple campus in Jobs (2013). The worst has to be Steve Carrell’s inexplicable nose[2] in his depiction of John Du Pont in Foxcatcher (2014). As Aisha Harris wrote in Slate:

If the person the actor is portraying had a distinctive look or physical attribute that is essential to their story, then it’s time to call in the prosthetics team. But if their looks have no bearing on the plot or on the movie’s themes, then don’t give them a second thought.

[2] Although Ocean’s Thirteen was released seven years earlier, Linus Caldwell’s defence of his prosthetic nose only brings Carrell’s Du Pont to mind when I watch it these days.

The actor’s and producers’ sense of fulfilment at having recreated a whole character in another person shouldn’t matter – but it has come to matter increasingly so with the advent of advanced cosmetic technologies. As a result, actors may also be compelled to participate in the shape-shifting exercise and hope to achieve an ostensibly complete transformation, sometimes (with The Accidental Prime Minister tripping over itself to offer examples) banking on appearances over acting itself. Their excuse might be that audiences are also anxious[3] to have famous people brought to life, to be able to scale walls of privacy and seclusion using the camera – i.e. the voyeurism that justifies the production and viewing of biopics.

[3] That the outer man is a picture of the inner, and the face an expression and revelation of the whole character, is a presumption likely enough in itself, and therefore a safe one to go on; borne out as it is by the fact that people are always anxious to see anyone who has made himself famous. – Arthur Schopenhauer

However, it’s not clear to me if this requires an actor to recreate the physical appearance of their chosen character to the point of completely eliding their own form, and whether such elision is worth celebrating for its technical rigour alone. The latter at least must fall on the wrong side of the line between the emergent complexity of acting and the subset, and more trivial, craft of imitation.[4] For example, it might be worth paying attention, when Thalaivi finally hits theatres in mid-2020, to how the film addresses Jayalalithaa’s fatness.

[4] A friend in college decided to sing AC/DC’s ‘Back In Black’ for his band’s performance at an event. After two days of near-continuous practice, he could recreate neither Brian Johnson’s freakishly high-pitched rendition nor the singer’s distinct Tyneside accent, and gave up and switched to ‘Paint It Black’ by Inkubus Sukkubus.

As Your Fat Friend elucidated in this essay, actors donning fat-suits has the effect of showing “a fat person’s pitiable and limited life”, realises “a mocking, cruel kind of comic relief”, “[chips] away at our collective ability to see fat people as fully human”, fuels “narratives [that] subtly assert that thin people know as much as (or more than) fat people do about what it’s like to be fat” and helps “thin people feel good about being thin” at the cost of accusing “fat people who stay fat” of “simply shirking their responsibility to create a body that would earn them respect”.

This is all what Thalaivi stands at risk of doing – and given Tamil cinema’s sensibilities on this issue as constructed in hundreds of films over the years, I don’t have my hopes up. At the same time, the fatness in question belonged to J. Jayalalithaa, a towering personality in the history of Tamil and Indian politics whose persona long ago transcended her physical appearance. Jayalalithaa was also a benevolent dictator of sorts, concentrated power within the party and closely controlled media narratives by restricting access to journalists. So if Thalaivi had the AIADMK’s favour in its production, it isn’t likely to be anything but laudatory, which in turn could leave the fatness unaddressed if only in an effort to be nice (instead of smart).

Finally, the question still stands: Why did Ranaut appear fatter in the first place? Couldn’t she have essayed Jayalalithaa as a thin person (which could be a more appropriate course of action if the film is going to sidestep Jayalalithaa’s use of steroids or the details of her poor health), or did the makers feel doing so would more evidently indicate their discomfort with the subject, or – most likely – they wanted to make as few changes as possible while transplanting a real story to the silver screen?

I wait with somewhat bated breath for June 2020, as well as for the two other productions revolving around Jayalalithaa’s life currently in the works: The Iron Lady starring Nithya Menen and Queen starring Ramya Krishnan.

Accumulation then philanthropy

Peter Woit’s review of a new book about Jim Simons, the mathematician and capitalist who set up the Simons Foundation, which funds math and physics research around the world but principally in the West to the tune of $300 million a year, raises an intriguing question only to supersede its moral quandaries by the political rise of Donald Trump in the US. To quote select portions from the review:

In the case of the main money-maker, their Medallion fund, it’s hard to argue that the short-term investment strategies they use provide important market liquidity. The fund is closed to outside investors, and makes money purely personally for those involved with RenTech, not for institutions like pension funds. So, the social impact of RenTech will come down to that of what Simons and a small number of other mathematicians, physicists and computer scientists decide to do with the trading profits.

Simons himself has engaged in some impressive philanthropy, but one perhaps should weigh that against the effects of the money spent by Robert Mercer, the co-CEO he left the company to. Mercer and his daughter have a lot of responsibility for some of the most destructive recent attacks on US democracy (e.g. Breitbart and the Cambridge Analytica 2016 election story). In the historical evaluation of whether the world would have been better off with or without RenTech, the fact that RenTech money may have been a determining factor in bringing Trump and those around him to power is going to weigh heavily on one side.

This may be the Simons Foundation’s fate but what of other wealthy bodies that accumulate capital by manipulating various financial instruments – the way Jim Simons did – and then donate all or part of them to research? Bill Gates was complicit, as were his compatriots at Silicon Valley, in the rise of techno-optimism and its attendant politics and fallacies, but the foundation he and his wife run today is becoming instrumental in the global fight against malaria. Gates’s Microsoft cofounder Paul Allen has a similar story, as did Jeffrey Epstein, as do many other ‘venture capitalists’ who had to accumulate capital – a super-sin of our times – before redistributing it philanthropically to various causes, benign and otherwise.

If these various organisations hadn’t acquired their wealth in the first place, would their later philanthropy have been necessary? A follow-up: There’s an implicit tendency to assume the research that these foundations fund can only be a good but is it really? Aside from the question of science’s, and scientists’, relationship with the rest of society, I wonder how differently research efforts would be spread around the world if the world had been spared the accumulation-then-philanthropy exercise. If there is a straightforward argument for why there’s likely to be no difference, I’m all ears; but if such an argument doesn’t exist, perhaps there’s an injustice there we should address.

To see faces where there are none

This week in “neither university press offices nor prestigious journals know what they’re doing”: a professor emeritus at Ohio University who claimed he had evidence of life on Mars, and whose institution’s media office crafted a press release without thinking twice to publicise his ‘findings’, and the paper that Nature Medicine published in 2002, cited 900+ times since, that has been found to contain multiple instances of image manipulation.

I’d thought the professor’s case would remain obscure because it’s evidently crackpot but this morning, articles from Space.com and Universe Today showed up on my Twitter setting the record straight: that the insects the OU entomologist had found in pictures of Mars taken by the Curiosity rover were just artefacts of his (insectile) pareidolia. Some people have called this science journalism in action but I’d say it’s somewhat offensive to check if science journalism still works by gauging its ability, and initiative, to countering conspiracy theories, the lowest of low-hanging fruit.

The press release, which has since been taken down. Credit: EurekAlert and Wayback Machine

The juicier item on our plate is the Nature Medicine paper, the problems in which research integrity super-sleuth Elisabeth Bik publicised on November 21, and which has a science journalism connection as well.

Remember the anti-preprints article Nature News published in July 2018? Its author, Tom Sheldon, a senior press manager at the Science Media Centre, London, argued that preprints “promoted confusion” and that journalists who couldn’t bank on peer-reviewed work ended up “misleading millions”. In other words, it would be better if we got rid of preprints and journalists deferred only to the authority of peer-reviewed papers curated and published by journals, like Nature. Yet here we are today, with a peer-reviewed manuscript published in Nature Medicine whose checking process couldn’t pick up on repetitive imagery. Is this just another form of pareidolia, to see a sensational result – knowing prestigious journals’ fondness for such results – where there was actually none?

(And before you say this is just one paper, read this analysis: “… data from several lines of evidence suggest that the methodological quality of scientific experiments does not increase with increasing rank of the journal. On the contrary, an accumulating body of evidence suggests the inverse: methodological quality and, consequently, reliability of published research works in several fields may be decreasing with increasing journal rank.” Or this extended critique of peer-review on Vox.)

This isn’t an argument against the usefulness, or even need for, peer-review, which remains both useful and necessary. It’s an argument against ludicrous claims that peer-review is infallible, advanced in support of the even more ludicrous argument that preprints should be eliminated to enable good journalism.